Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(9): 1055, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589813

RESUMO

The environmental impacts and risks of nanomaterials that are commonly used in different technologies are of great concern as their toxic effects on the aquatic ecosystem remain unclear. In this study, bismuth sulfide (Bi2S3) nanoflowers (nfs) were synthesized using a microwave-based hydrothermal process, and their genotoxic effects were investigated in the common carp, Cyprinus carpio. Bi2S3 nanoflowers were applied to common carp for 96 h. LC50 value (LC50 = 350 mg/L-1) was determined for acute toxicity with probit analysis, and three sublethal concentrations (35, 87, and 175 mg/L-1) were selected accordingly for genotoxicity tests. Such LC50 value - 350 mg L-1 for the common carp makes these nanoflowers non-toxic to aquatic organisms according to the EU-Directive 93/67/EEC classification scheme. Toxicological evaluations of the sublethal concentrations of Bi2S3 nanoflowers demonstrated that the 35 and 87 mg L-1 Bi2S3nfs groups were generally harmless and similar to the control group. Only the 175 mg L-1 Bi2S3nfs group had significant DNA damage frequency and nuclear abnormalities than the control and other Bi2S3nfs groups. To the best of our knowledge, this is a novel data on genotoxicity reported for fish species exposed to Bi2S3 nanoflowers; however, further systematic studies need to be performed to fully estimate the effects of Bi2S3 nanoflowers on aquatic life.


Assuntos
Carpas , Animais , Ecossistema , Monitoramento Ambiental , Dano ao DNA
2.
Ecotoxicology ; 31(9): 1390-1402, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36223039

RESUMO

Heavy metal contamination in the coastal and marine ecosystems is becoming a serious risk to aquatic organisms and humans. This study reports the effects, including genetic damage, of accumulations of trace metals on Liza aurata, which is used as a bio-indicator species, in the Payas coast of Iskenderun Bay, north-eastern Mediterranean by COMET Assay. L. aurata were seasonally collected from a sampling site and a reference site for one year. Physicochemical parameters in water and trace metals in the tissues of fish collected from these sites were determined by electrochemical techniques. High DNA damage frequency in L. aurata was observed along the Payas coast of Iskenderun Bay compared to the reference site because of pollutants. The detected high levels of Cd, Pb, Fe and Cu accumulation in L. aurata exceed the maximum levels allowed by the national and international limit values. Significant positive correlations between Cd, Pb, Hg, Cr, Fe, Zn, and Cu accumulations and DNA damage parameters were observed in the present study. Additionally, we first reported the successful use of the electrochemical technique in the determination of trace metal concentrations in mullet. Moreover, L. aurata constitutes a key tool as a sentinel organism for biomonitoring of coastal ecosystems.


Assuntos
Metais Pesados , Perciformes , Smegmamorpha , Oligoelementos , Poluentes Químicos da Água , Animais , Humanos , Monitoramento Ambiental/métodos , Bioacumulação , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ecossistema , Cádmio , Chumbo , Metais Pesados/toxicidade , Dano ao DNA
3.
Environ Sci Pollut Res Int ; 27(30): 38047-38055, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32621191

RESUMO

Aquatic organisms are exposed to a variety of contaminants such as heavy metals introduced into the environment as a consequence of anthropogenic activities that usually cause genotoxic damage in aquatic organisms. DNA damage biomarkers for fish species detect genotoxic parameters for ecological risk assessment. In the present study, the effect of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn, Co, and Mn) on DNA damage of Anguilla anguilla was examined by comet assay at reference site and three different sampling sites of the Orontes River. The relative mean heavy metal concentrations in water column were in the order of Fe>Cr>Pb>Zn>Ni>Cu>Mn>Cd>Co in all the sampling sites. Cr, Cd, and Pb concentrations at all sampling sites were above the values allowed by the EPA (1999, 2016). With these results, negative effects of Cr, Cd, and Pb appeared on ecosystem health. The comet assay showed a higher level of DNA damage in the gill cells in comparison with the liver cells of A. anguilla. The highest level of DNA damage as %T-DNA, tail moment, and tail migration in gill cells were 20.007 ± 1.744 %; 2.899 ± 0.341 µm, and 12.383 ± 01.040 TMi and 20.172 ± 1.944 %, 2.559 ± 0.265 µm, and 10.763 ± 0.910 TMi at Site 2 and Site 3, respectively. The correlations between heavy metals and DNA damage parameters revealed that both Cu and Co in water showed significant negative correlations (p < 0.05) with DNA damage levels. Consequently, this study revealed the genotoxic damage of A. anguilla due to pollution in Orontes River and lead to the better understanding of genotoxicity and heavy metal relationships.


Assuntos
Anguilla , Metais Pesados/análise , Poluentes Químicos da Água/análise , Animais , Ecossistema , Monitoramento Ambiental , Toxicogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA