Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 93(4): e20191388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34378756

RESUMO

Studies focusing on terminal drought combined with heat impacts on plants of agronomic value remain scarce, and even less under field conditions. The objective of this study was to investigate leaf structural and ultrastructural changes induced by heat stress (HS) and drought stress (DS) during seed filling and their relationship with physiological variables and yield determination. Two soybean cultivars were grown in field conditions. During seed filling four treatments were applied, including a control (without manipulation, at ambient temperature and field capacity), HS (episodes exceeding 32°C for 6 h d-1) during 21-d, DS (20% of field capacity soil water content) during 35-d, and HS×DS. Drought principally reduced leaf area, whereas heat decreased leaf thickness, possible as acclimation strategies, but also irreversible reducing CO2 assimilation sites. Both stresses damaged the outer and inner membranes of chloroplasts, causing swollen chloroplasts and accumulation of plastoglobules, loss of chlorophyll content, and negatively affecting chlorophyll fluorescence. Thus, the performance and integrity of the photosynthetic machinery were reduced. Through a morpho-functional perspective and a holistic multiscale approach, our results provide evidence of photosynthesis impairment and yield drops under stressful conditions which were associated with structural and ultrastructural (particularly at the level of chloroplasts) modifications of leaves.


Assuntos
Secas , Glycine max , Clorofila , Resposta ao Choque Térmico , Fotossíntese , Folhas de Planta , Sementes , Água
2.
Plant Physiol Biochem ; 166: 437-447, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34157606

RESUMO

Soybean plants under heat and drought generate a multiplicity of responses in photosynthesis and senescence, impairing growth, yield, and seed quality. The goal of this study was to analyze and quantify independent and combined effects of heat and drought during seed filling on photosynthesis and senescence, and its subsequent effects on the filling duration in soybean genotypes contrasting on seed protein. Two field experiments were conducted using high and low seed protein genotypes. During seed filling plants were exposed to four treatments: control (ambient temperature and soil water content near field capacity), heat stress (HS, episodes above 32 °C 6 h d-1) during 15-d, drought stress (DS, soil water content ≤ 25% of field capacity) during the entire seed filling, and HS × DS. We found non-genotypic variation in leaf photosynthesis in both experiments. Irrigated HS, did no alter photosynthesis and senescence. Drought, regardless of heat, reduced photosynthesis, carbohydrate production and affected membranes integrity, leading to premature leaf senescence and shortening the filling duration. The magnitude of responses was similar between drought alone and stresses combined, indicating a dominant role of drought over heat. The seed filling duration was not shorter in high protein compared to low protein genotype, nor was senescence pattern altered across treatments. These results indicated that the higher seed protein content exhibited by some genotypes are not necessarily associated with an earlier onset of senescence and shortening of the filling period as suggested by previous studies analyzing genotypes differing in protein concentration.


Assuntos
Glycine max , Fotossíntese , Secas , Folhas de Planta , Sementes , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA