Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem B ; 9(13): 3015-3024, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885663

RESUMO

The incorporation of thiourethane prepolymer (TU) into either the organic phase or as a surface treatment for filler particles in composites reduces polymerization stress and improves fracture toughness. The aim of this study was to gain insight into the influence of the inclusion of thiourethanes on the resulting network of methacrylate-based materials polymerized via free-radical mechanisms. Dynamic mechanical analysis was used to elucidate network parameters and potential stress relaxation behavior of these networks. TU oligomers were synthesized using a combination of trimethylol-tris-3-mercaptopropionate and dicyclohexylmethane 4,4'-diisocyanate and added into composite formulations at 20 wt% replacing part of the organic matrix and/or as TU-silanes used to functionalize filler particles (TU-matrix, TU-Sil or TU-matrix/sil). Materials not containing any form of TU were used as the control (in those cases, 3-(trimethoxysilyl)propyl methacrylate was used as the silane agent). Filler was added at 50 wt%. Degree of conversion was evaluated by near-IR spectroscopy, mechanical properties by 3-point bending and rotational rheometry. Dynamic mechanical analysis was used to obtain network parameters (glass transition temperature (Tg), storage modulus, cross-link density, and breadth of tan delta a proxy for network homogeneity - temperature sweep experiments) and to evaluate the potential for network relaxation (stress relaxation). TU-containing formulations showed 10% higher DC than the control. The time to reach storage/loss modulus crossover in the rheometer experiments was significantly longer for TU-matrix and TU-matrix/sil in comparison with the control (21.6, 27.9, and 5.1 s, respectively). TU-matrix and TU-matrix/sil presented significant lower Tg than the control (151.5, 153.8, and 161.3 °C, respectively). There were no statistical differences among the groups in terms of shear modulus, cross-link density, breadth of tan delta, flexural strength/modulus, and toughness. For at least one group (TU-matrix/sil), the relaxation time was four times faster than for the control at 105 °C. The addition of TU additives into dental polymers resulted in a stark reduction in the stress relaxation time. This behavior, in tandem with the network characterization and mechanical properties seems to indicate the TU networks undergo a variety of reversible associative and dissociative chemical reactions which facilitate enhanced stress relief.


Assuntos
Carbamatos/química , Metacrilatos/química , Compostos de Sulfidrila/química , Vidro/química , Estresse Mecânico , Temperatura
2.
Mater Sci Eng C Mater Biol Appl ; 118: 111535, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255088

RESUMO

OBJECTIVES: The aim of this study was to modify the surface of fillers used in dental composites by the synthesis of two novel thiourethane oligomeric silanes, used to functionalize the silica-containing inorganic particles. Several thiourethane silane concentrations were tested during the silanization process to systematically assess the effect of silane coverage on experimental composite conversion, polymerization stress and fracture toughness. MATERIALS AND METHODS: Two different thiourethane silanes were synthesized based either on 1,6-hexanediol-diissocynate (HDDI), or 1,3-bis(1-isocyanato-1-methylethyl) benzene (BDI). Conventional 3-(Trimethoxysilyl)propyl methacrylate was used as the control. Glass fillers were silanized with 1, 2 or 4 wt% of each thiourethane silane, then evaluated by thermogravimetrical analysis. Photopolymerizable resin composites were prepared with Bis-GMA/UDMA/TEGDMA and 50 wt% silanized glass filler. Polymerization kinetics and degree of conversion were tested using Near-IR. Bioman was used to test polymerization stress. Data were analyzed with two-way ANOVA/Tukey's test (α = 5%). RESULTS: The mass of silane coupled to the filler increased with the concentrations of thiourethane in the silanizing solution, as expected. Thiourethane-containing groups exhibited significantly higher degree of conversion compared to control groups, except for BDI 4%. HDDI 4%, BDI 2% and BDI 4% showed significantly lower polymerization stress than control groups. HDDI 4% exhibited significantly higher fracture toughness. CONCLUSIONS AND CLINICAL SIGNIFICANCE: Novel filler functionalization with thiourethane silanes may be a promising alternative for improving dental composites properties by significantly increasing the degree of conversion, fracture toughness and reducing the polymerization stress.


Assuntos
Resinas Compostas , Ácidos Polimetacrílicos , Bis-Fenol A-Glicidil Metacrilato , Teste de Materiais , Metacrilatos , Polietilenoglicóis , Silanos , Propriedades de Superfície
3.
Dent Mater ; 36(7): 829-837, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32446504

RESUMO

OBJECTIVE: The aim of this in vitro study was to test the effect of different composite modulation protocols (pre-heating, light-curing time and oligomer addition) for bulk filling techniques on resin polymerization stress, intra-pulpal temperature change and degree of conversion. METHODS: Class I cavities (4mm depth×5mm diameter) were prepared in 48 extracted third molars and divided in 6 groups. Restorations were completed with a single increment, according to the following groups: (1) Filtek Z250XT (room temperature - activated for 20s); (2) Filtek Z250XT (at room temperature - activated for 40s); (3) Filtek Z250XT (pre-heated at 68°C - activated for 20s); (4) Filtek Z250XT (pre-heated at 68°C - activated for 40s); (5) Filtek BulkFill (at room temperature - activated for 20s); (6) Filtek Z250XT (modified by the addition of a thio-urethane oligomer at room temperature - activated for 40s). Acoustic emission test was used as a real-time polymerization stress (PS) assessment. The intra-pulpal temperature change was recorded with a thermocouple and bottom/top degree of conversion (DC) measured by Raman spectroscopy. Data were analyzed with one-way ANOVA/Tukey's test (α=5%). RESULTS: Pre-heating the resin composite did not influence the intra-pulpal temperature (p=0.077). The thio-urethane-containing composite exhibited significantly less PS, due to a lower number of acoustic events. Groups with pre-heated composites did not result in significantly different PS. Filtek BulkFill and the thio-urethane experimental composite presented significantly higher DC. SIGNIFICANCE: Resin composite pre-heating was not able to reduce polymerization stress in direct restorations. However, thio-urethane addition to a resin composite could reduce the polymerization stress while improving the DC.


Assuntos
Resinas Compostas , Cárie Dentária , Polpa Dentária , Humanos , Teste de Materiais , Polimerização , Temperatura
4.
Oper Dent ; 32(2): 133-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17427821

RESUMO

This study investigated the microtensile bond strength (microTBS) of a one-step self-etching adhesive to human dentin and bovine enamel following different bonding treatments. Occlusal portions of human molars and labial surfaces of bovine incisors were ground flat to provide uniform dentin and enamel surfaces, respectively. Futurabond was used following five different protocols: 1) according to the manufacturer's directions, 2) acid etched with 36% phosphoric acid (H3PO4) for 15 seconds, 3) 10% sodium hypochlorite (NaOCl) treated for two minutes after H3PO4-etching, 4) doubling the application time of the adhesive and 5) doubling the number of adhesive coats. Composite build-ups (6 mm in height) were constructed incrementally with Arabesk resin composite. The specimens were stored in 100% humidity for 24 hours at 37 degrees C and sectioned into beams of 1.0 mm2 cross-sectional area. Each beam was tested in tension in an Instron machine at 0.5 mm/minute, and mean microTBS data (MPa) were analyzed by one-way ANOVA and post-hoc multiple comparisons tests (alpha = 0.05). Doubling the application time of Futurabond attained the highest microTBS to dentin; whereas, no differences among all bonding application parameters evaluated could be detected when the adhesive was applied to enamel.


Assuntos
Acetona/química , Colagem Dentária , Adesivos Dentinários/química , Solventes/química , Condicionamento Ácido do Dente , Animais , Bovinos , Resinas Compostas/química , Esmalte Dentário/ultraestrutura , Dentina/ultraestrutura , Humanos , Umidade , Teste de Materiais , Metacrilatos/química , Oxidantes/química , Ácidos Fosfóricos/química , Hipoclorito de Sódio/química , Estresse Mecânico , Temperatura , Resistência à Tração , Fatores de Tempo
5.
J Dent Res ; 84(8): 736-40, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16040732

RESUMO

The existence of unprotected collagen fibrils within the hybrid layer compromises the longevity of restorations. This phenomenon may be avoided if solutions other than strong acids are used for dentin demineralization. The hypothesis to be tested is that bond durability may be improved by EDTA demineralization. Dentin surfaces (human and bovine) were bonded: (1) after phosphoric-acid-etching, and after EDTA demineralization with (2) a total-etch adhesive and (3) a self-etching adhesive. After the teeth were sectioned into beams, half of the specimens were immersed in NaOCl, while the other half was immersed in water. Beams were tested to failure in tension. ANOVA and multiple-comparisons tests were used (P < 0.05). No differences in bond strength were found among the 3 bonding procedures, although bonds made to human molars were 43-61% higher than those to bovine incisors. After NaOCl immersion, only specimens subjected to EDTA demineralization maintained the initial bond strength. We conclude that the collagen network is better-preserved after EDTA demineralization.


Assuntos
Quelantes/farmacologia , Colagem Dentária , Dentina/efeitos dos fármacos , Ácido Edético/farmacologia , Cimentos de Resina , Análise de Variância , Animais , Bis-Fenol A-Glicidil Metacrilato , Bovinos , Corrosão Dentária/métodos , Análise do Estresse Dentário , Dentina/ultraestrutura , Adesivos Dentinários , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Oxidantes/farmacologia , Hipoclorito de Sódio/farmacologia , Estatísticas não Paramétricas , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA