Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 118(11): 2816-2828, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348719

RESUMO

Bacterial chemotaxis, the directed migration of bacteria in a gradient of chemoattractant, is one of the most well-studied and well-understood processes in cell biology. On the other hand, bacterial thermotaxis, the directed migration of bacteria in a gradient of temperature, is understood relatively poorly, with somewhat conflicting reports by different groups. One of the reasons for that is the relative technical difficulty of the generation of well-defined gradients of temperature that are sufficiently steep to elicit readily detectable thermotaxis. Here, we used a specially designed microfluidic device to study thermotaxis of Escherichia coli in a broad range of thermal gradients with a high rate of data collection. We found that in shallow temperature gradients with narrow temperature ranges, E. coli tended to aggregate near a sidewall of the gradient channel at either the lowest or the highest temperature. On the other hand, in sufficiently steep gradients with wide temperature ranges, E. coli aggregated at intermediate temperatures, with maximal cell concentrations found away from the sidewalls. We observed this intermediate temperature aggregation in a motility buffer that did not contain any major chemoattractants of E. coli, in contradiction to some previous reports, which suggested that this type of aggregation required the presence of at least one major chemoattractant in the medium. Even more surprisingly, the aggregation temperature strongly depended on the gradient steepness, decreasing by ∼10° as the steepness was increased from 27 to 53°C/mm. Our experiments also highlight the fact that assessments of thermal gradients by changes in fluorescence of temperature-sensitive fluorescent dyes need to account for thermophoresis of the dyes.


Assuntos
Escherichia coli , Resposta Táctica , Quimiotaxia , Dispositivos Lab-On-A-Chip , Temperatura
2.
Elife ; 62017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28826491

RESUMO

In bacteria various tactic responses are mediated by the same cellular pathway, but sensing of physical stimuli remains poorly understood. Here, we combine an in-vivo analysis of the pathway activity with a microfluidic taxis assay and mathematical modeling to investigate the thermotactic response of Escherichia coli. We show that in the absence of chemical attractants E. coli exhibits a steady thermophilic response, the magnitude of which decreases at higher temperatures. Adaptation of wild-type cells to high levels of chemoattractants sensed by only one of the major chemoreceptors leads to inversion of the thermotactic response at intermediate temperatures and bidirectional cell accumulation in a thermal gradient. A mathematical model can explain this behavior based on the saturation-dependent kinetics of adaptive receptor methylation. Lastly, we find that the preferred accumulation temperature corresponds to optimal growth in the presence of the chemoattractant serine, pointing to a physiological relevance of the observed thermotactic behavior.


Assuntos
Fatores Quimiotáticos/farmacologia , Escherichia coli K12/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Quimiotáticas Aceptoras de Metil/genética , Receptores de Superfície Celular/genética , Resposta Táctica/fisiologia , Adaptação Fisiológica , Ácido Aspártico/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Técnicas Analíticas Microfluídicas , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/farmacologia , Transdução de Sinais , Temperatura
3.
Curr Biol ; 27(9): 1278-1287, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28416114

RESUMO

It is generally assumed that the allocation and synthesis of total cellular resources in microorganisms are uniquely determined by the growth conditions. Adaptation to a new physiological state leads to a change in cell size via reallocation of cellular resources. However, it has not been understood how cell size is coordinated with biosynthesis and robustly adapts to physiological states. We show that cell size in Escherichia coli can be predicted for any steady-state condition by projecting all biosynthesis into three measurable variables representing replication initiation, replication-division cycle, and the global biosynthesis rate. These variables can be decoupled by selectively controlling their respective core biosynthesis using CRISPR interference and antibiotics, verifying our predictions that different physiological states can result in the same cell size. We performed extensive growth inhibition experiments, and we discovered that cell size at replication initiation per origin, namely the initiation mass or unit cell, is remarkably invariant under perturbations targeting transcription, translation, ribosome content, replication kinetics, fatty acid and cell wall synthesis, cell division, and cell shape. Based on this invariance and balanced resource allocation, we explain why the total cell size is the sum of all unit cells. These results provide an overarching framework with quantitative predictive power over cell size in bacteria.


Assuntos
Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/fisiologia , Antibacterianos/farmacologia , Ciclo Celular , Cromossomos Bacterianos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Cinética , Ribossomos/metabolismo
4.
Sci Rep ; 6: 39076, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996021

RESUMO

The ability to control the level of gene expression is a major quest in biology. A widely used approach employs deletion of a nonessential gene of interest (knockout), or multi-step recombineering to move a gene of interest under a repressible promoter (knockdown). However, these genetic methods are laborious, and limited for quantitative study. Here, we report a tunable CRISPR-cas system, "tCRISPRi", for precise and continuous titration of gene expression by more than 30-fold. Our tCRISPRi system employs various previous advancements into a single strain: (1) We constructed a new strain containing a tunable arabinose operon promoter PBAD to quantitatively control the expression of CRISPR-(d)Cas protein over two orders of magnitude in a plasmid-free system. (2) tCRISPRi is reversible, and gene expression is repressed under knockdown conditions. (3) tCRISPRi shows significantly less than 10% leaky expression. (4) Most important from a practical perspective, construction of tCRISPRi to target a new gene requires only one-step of oligo recombineering. Our results show that tCRISPRi, in combination with recombineering, provides a simple and easy-to-implement tool for gene expression control, and is ideally suited for construction of both individual strains and high-throughput tunable knockdown libraries.


Assuntos
Arabinose/metabolismo , Expressão Gênica , Engenharia Genética/métodos , Óperon , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Regiões Promotoras Genéticas
5.
Lab Chip ; 15(3): 857-66, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25490410

RESUMO

Oxygen is essential for metabolism of animals and is a vital component of their natural habitats. Hypoxic conditions in tissue, when oxygen levels are lower than normal, change a variety of cellular processes, while environmental hypoxia can have physiological and behavioral effects on the whole animal. Larval zebrafish respond to oxygen deprivation with a characteristic set of physiological changes and motor behaviors, making them a convenient vertebrate model to study hypoxia responses. However, to date, hypoxia studies in zebrafish are limited by the existing experimental setups, which only impose hypoxia on a scale of minutes to hours. Here, we present a microfluidic system, which makes it possible to expose spatially confined unanesthetized zebrafish larvae to a broad range of hypoxic and normoxic conditions and to switch between different oxygen concentrations in the medium around the larvae on a 2 second timescale. We used the system to observe different behavioral responses of zebrafish larvae to three levels of rapidly imposed hypoxia. Larvae increased their rate of body movements in response to the strongest hypoxia and increased their rate of pectoral fin beats in response to all levels of hypoxia. Importantly, the behavior of the larvae changed within 15 seconds of the changes in the oxygen content of the medium. The proposed experimental system can be used to study the behavior of zebrafish larvae or other aquatic organisms exposed to other water-dissolved gasses or to different temporal patterns of oxygen concentration. This system can also potentially be used for testing the effects of genetic modifications and small molecule drugs and for probing neural mechanisms underlying various behaviors.


Assuntos
Hipóxia/metabolismo , Técnicas Analíticas Microfluídicas , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Comportamento Animal , Larva/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Oxigênio/análise , Oxigênio/metabolismo
6.
Nat Commun ; 5: 5737, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25517430

RESUMO

The temperature-jump technique, in which the sample is rapidly heated by a powerful laser pulse, has been widely used to probe the fast dynamics of folding of proteins and nucleic acids. However, the existing temperature-jump setups tend to involve sophisticated and expensive instrumentation, while providing only modest temperature changes of ~10-15 °C, and the temperature changes are only rapid for heating, but not cooling. Here we present a setup comprising a thermally conductive sapphire substrate with light-absorptive nano-coating, a microfluidic device and a rapidly switched moderate-power infrared laser with the laser beam focused on the nano-coating, enabling heating and cooling of aqueous solutions by ~50 °C on a 1-µs time scale. The setup is used to probe folding and unfolding dynamics of DNA hairpins after direct and inverse temperature jumps, revealing low-pass filter behaviour during periodic temperature variations.


Assuntos
DNA/química , Sequências Repetidas Invertidas , Técnicas Analíticas Microfluídicas/instrumentação , Simulação de Dinâmica Molecular , Temperatura Baixa , Temperatura Alta , Cinética , Lasers , Luz , Conformação de Ácido Nucleico , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 111(40): 14448-53, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25249632

RESUMO

Natural chemical gradients to which cells respond chemotactically are often dynamic, with both spatial and temporal components. A primary example is the social amoeba Dictyostelium, which migrates to the source of traveling waves of chemoattractant as part of a self-organized aggregation process. Despite its physiological importance, little is known about how cells migrate directionally in response to traveling waves. The classic back-of-the-wave problem is how cells chemotax toward the wave source, even though the spatial gradient reverses direction in the back of the wave. Here, we address this problem by using microfluidics to expose cells to traveling waves of chemoattractant with varying periods. We find that cells exhibit memory and maintain directed motion toward the wave source in the back of the wave for the natural period of 6 min, but increasingly reverse direction for longer wave periods. Further insights into cellular memory are provided by experiments quantifying cell motion and localization of a directional-sensing marker after rapid gradient switches. The results can be explained by a model that couples adaptive directional sensing to bistable cellular memory. Our study shows how spatiotemporal cues can guide cell migration over large distances.


Assuntos
Algoritmos , Quimiotaxia/fisiologia , Dictyostelium/fisiologia , Modelos Biológicos , AMP Cíclico/metabolismo , Dictyostelium/citologia , Dictyostelium/metabolismo , Cinética , Microfluídica/métodos , Movimento/fisiologia , Fatores de Tempo , Proteínas ras/metabolismo
8.
Lab Chip ; 12(22): 4835-47, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23010909

RESUMO

Aerotaxis, the directional motion of bacteria in gradients of oxygen, was discovered in the late 19th century and has since been reported in a variety of bacterial species. Nevertheless, quantitative studies of aerotaxis have been complicated by the lack of tools for generation of stable gradients of oxygen concentration, [O(2)]. Here we report a series of experiments on aerotaxis of Escherichia coli in a specially built experimental setup consisting of a computer-controlled gas mixer and a two-layer microfluidic device made of polydimethylsiloxane (PDMS). The setup enables generation of a variety of stable linear profiles of [O(2)] across a long gradient channel, with characteristic [O(2)] ranging from aerobic to microaerobic conditions. A suspension of E. coli cells is perfused through the gradient channel at a low speed, allowing cells enough time to explore the [O(2)] gradient, and the distribution of cells across the gradient channel is analyzed near the channel outlet at a throughput of >10(5) cells per hour. Aerotaxis experiments are performed in [O(2)] gradients with identical logarithmic slopes and varying mean concentrations, as well as in gradients with identical mean concentrations and varying slopes. Experiments in gradients with [O(2)] ranging from 0 to ~11.5% indicate that, in contrast to some previous reports, E. coli cells do not congregate at some intermediate level of [O(2)], but rather prefer the highest accessible [O(2)]. The presented technology can be applied to studies of aerotaxis of other aerobic and microaerobic bacteria.


Assuntos
Escherichia coli/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Movimento , Dimetilpolisiloxanos/química , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Movimento/efeitos dos fármacos , Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA