Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Parasitol Res ; 122(8): 1851-1861, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37233818

RESUMO

The high diversity of bats in the Neotropics is primarily associated with various ectoparasite species on their bodies. Interactions between these animals need to be comprehensively investigated at landscape scales, focusing on understanding the patterns of diversity of species. We sought to evaluate, througt bat captures and ectoparasite sampling, the determinants of the composition of ectoparasitic flies species present in bats in in the Amazon and Cerrado biomes and ecotone areas. We used a generalized dissimilarity model (GDM) to verify what factors explained the composition of ectoparasitic flies of bats using landscape metrics, geographic distance, biome, and host composition. Twenty-four bat species haboured a total of 33 species of ectoparasitic flies. Host composition was the best predictor of fly composition, followed by the environmental variables and by biome. Geographical distance presented negligible effects. Studies on large scales tend to reveal a wide diversity of ectoparasitic flies. Host composition, as the best predictor of fly composition, may be associated with interspecific characteristics among species. We recommend studies focusing on the landscape to understand better the parasitic associations of bats and their distribution across environments.


Assuntos
Quirópteros , Dípteros , Ectoparasitoses , Animais , Quirópteros/parasitologia , Ectoparasitoses/veterinária , Ectoparasitoses/parasitologia , Interações Hospedeiro-Parasita , Ecossistema
2.
Parasitol Res ; 122(6): 1391-1402, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37039866

RESUMO

Human land use causes habitat loss and fragmentation, influencing host-parasite associations through changes in infestation rates, host mortality and possibly local extinction. Bat-ectoparasite interactions are an important host-parasite model possibly affected by such changes, as this system acts as both reservoirs and vectors of several pathogens that can infect different wild and domestic species. This study aimed to assess how the prevalence and abundance of bat ectoparasites respond to forest loss, fragmentation, and edge length. Bats and ectoparasites were sampled at twenty sites, forming a gradient of forest cover, in southwestern Brazil during two wet (2015 and 2016) and two dry (2016 and 2017) seasons. Effects of landscape metrics on host abundance as well as parasite prevalence and abundance were assessed through structural equation models. Nine host-parasite associations provided sufficient data for analyses, including one tick and eight flies on four bat species. Forest cover positively influenced the prevalence or abundance of three fly species, but negatively influenced one fly and the tick species. Prevalence or abundance responded positively to edge length for three fly species, and negatively for the tick. In turn, number of fragments influenced the prevalence or abundance of four fly species, two positively and two negatively. Our results support species-specific responses of ectoparasites to landscape features, and a tendency of host-generalist ticks to benefit from deforestation while most host-specialist flies are disadvantaged. Differences in host traits and abundance, along with parasite life cycles and environmental conditions, are possible explanations to our findings.


Assuntos
Quirópteros , Dípteros , Carrapatos , Animais , Humanos , Quirópteros/parasitologia , Florestas , Ecossistema , Interações Hospedeiro-Parasita , Dípteros/fisiologia
3.
Sci Data ; 9(1): 155, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383183

RESUMO

Understanding biodiversity patterns as well as drivers of population declines, and range losses provides crucial baselines for monitoring and conservation. However, the information needed to evaluate such trends remains unstandardised and sparsely available for many taxonomic groups and habitats, including the cave-dwelling bats and cave ecosystems. We developed the DarkCideS 1.0 ( https://darkcides.org/ ), a global database of bat caves and species synthesised from publicly available information and datasets. The DarkCideS 1.0 is by far the largest database for cave-dwelling bats, which contains information for geographical location, ecological status, species traits, and parasites and hyperparasites for 679 bat species are known to occur in caves or use caves in part of their life histories. The database currently contains 6746 georeferenced occurrences for 402 cave-dwelling bat species from 2002 cave sites in 46 countries and 12 terrestrial biomes. The database has been developed to be collaborative and open-access, allowing continuous data-sharing among the community of bat researchers and conservation biologists to advance bat research and comparative monitoring and prioritisation for conservation.


Assuntos
Quirópteros , Animais , Biodiversidade , Bases de Dados Factuais , Ecossistema
4.
Parasitology ; 149(4): 534-541, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35331349

RESUMO

Environmental stability can have profound impacts on life history trait evolution in organisms, especially with respect to development and reproduction. In theory, free-living species, when subjected to relatively stable and predictable conditions over many generations, should evolve narrow niche breadths and become more specialized. In parasitic organisms, this level of specialization is reflected by their host specificity. Here, we tested how host specificity impacts the reproductive strategies of parasites, a subject seldomly addressed for this group. Through an extensive review of the literature, we collated a worldwide dataset to predict, through Bayesian multilevel modelling, the effect of host specificity on the reproductive strategies of parasitic copepods of fishes or corals. We found that copepods of fishes with low host specificity (generalists) invest more into reproductive output with larger clutch sizes, whereas generalist copepods of corals invest less into reproductive output with smaller clutch sizes. The differences in host turnover rates through an evolutionary timescale could explain the contrasting strategies across species observed here, which should still favour the odds of parasites encountering and infecting a host. Ultimately, the differences found in this study reflect the unique evolutionary history that parasites share both intrinsically and extrinsically with their hosts.


Assuntos
Parasitos , Animais , Teorema de Bayes , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Reprodução , Especificidade da Espécie
5.
Oecologia ; 194(4): 723-733, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33098457

RESUMO

Understanding factors affecting the distribution of vector-borne diseases in space and across species is of prime importance to conservation ecologists. Identifying the underlying patterns of disease requires a perspective encompassing large spatial scales. However, few studies have investigated disease ecology from a macroecological perspective. Hence, we use a global disease database to uncover worldwide infection patterns using avian malaria (Plasmodium) as a model for vector-borne disease transmission. Using data on 678 bird species from 442 locations, we show that environmental variables likely to synchronize bird and vector abundance are the key factors dictating infection risk for birds. Moreover, direct effects of host traits on exposure risk as well as potential trade-offs in resource allocation were also shown to affect disease susceptibility, with larger bird species being more prone to infection. Our results suggest that considering evolutionary strategies and factors influencing spatial overlap between hosts and vectors is crucial for understanding worldwide patterns of disease transmission success.


Assuntos
Malária Aviária , Plasmodium , Animais , Aves , Fenótipo
6.
Ecology ; 101(11): e03128, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32862433

RESUMO

Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data.


Assuntos
Canidae , Carnívoros , Mustelidae , Ursidae , Animais , Ecossistema , Humanos
7.
Parasitology ; 146(11): 1462-1466, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31142391

RESUMO

For parasites in natural systems, the most common pattern of spatial distribution is aggregation among hosts. The main causes of such aggregation are variable exposure of hosts to parasites and heterogeneity in host susceptibility. The objective of this study was to determine if there are differences in the aggregation pattern of two species of ectoparasitic flies between the Pantanal and Cerrado regions of Brazil on the bat Artibeus planirostris. We collected the ectoparasites from bats captured between 2002 and 2017 with mist nets in 21 sites in the Pantanal and 15 sites in the surrounding plateaus. The results showed that the aggregation of ectoparasitic flies in Pantanal was more pronounced than in Cerrado. The discrepancy aggregation index (D) of the bat fly Megistopoda aranea was 0.877 in Pantanal and 0.724 in Cerrado. The D values of Aspidoptera phyllostomatis was even higher, with 0.916 and 0.848 in the Pantanal and Cerrado, respectively. Differences in the shelters used may be the main factor shaping variation in aggregation, since the Pantanal does not have rock formations, with only foliage, crowns and hollow tree trunks. These differences likely affect host exposure to the parasites, leading to an increase in parasite aggregation.


Assuntos
Quirópteros , Dípteros/fisiologia , Ecossistema , Ectoparasitoses/veterinária , Interações Hospedeiro-Parasita , Animais , Brasil/epidemiologia , Ectoparasitoses/epidemiologia , Ectoparasitoses/parasitologia
8.
Parasitology ; 146(11): 1361-1370, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31142396

RESUMO

New technological methods, such as rapidly developing molecular approaches, often provide new tools for scientific advances. However, these new tools are often not utilized equally across different research areas, possibly leading to disparities in progress between these areas. Here, we use empirical evidence from the scientific literature to test for potential discrepancies in the use of genetic tools to study parasitic vs non-parasitic organisms across three distinguishable molecular periods, the allozyme, nucleotide and genomics periods. Publications on parasites constitute only a fraction (<5%) of the total research output across all molecular periods and are dominated by medically relevant parasites (especially protists), particularly during the early phase of each period. Our analysis suggests an increasing complexity of topics and research questions being addressed with the development of more sophisticated molecular tools, with the research focus between the periods shifting from predominantly species discovery to broader theory-focused questions. We conclude that both new and older molecular methods offer powerful tools for research on parasites, including their diverse roles in ecosystems and their relevance as human pathogens. While older methods, such as barcoding approaches, will continue to feature in the molecular toolbox of parasitologists for years to come, we encourage parasitologists to be more responsive to new approaches that provide the tools to address broader questions.


Assuntos
Técnicas Genéticas/instrumentação , Biologia Molecular/métodos , Parasitologia/métodos , Biologia Molecular/instrumentação , Parasitologia/instrumentação
9.
Ecology ; 99(2): 498, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29399824

RESUMO

Measures of traits are the basis of functional biological diversity. Numerous works consider mean species-level measures of traits while ignoring individual variance within species. However, there is a large amount of variation within species and it is increasingly apparent that it is important to consider trait variation not only between species, but also within species. Mammals are an interesting group for investigating trait-based approaches because they play diverse and important ecological functions (e.g., pollination, seed dispersal, predation, grazing) that are correlated with functional traits. Here we compile a data set comprising morphological and life history information of 279 mammal species from 39,850 individuals of 388 populations ranging from -5.83 to -29.75 decimal degrees of latitude and -34.82 to -56.73 decimal degrees of longitude in the Atlantic forest of South America. We present trait information from 16,840 individuals of 181 species of non-volant mammals (Rodentia, Didelphimorphia, Carnivora, Primates, Cingulata, Artiodactyla, Pilosa, Lagomorpha, Perissodactyla) and from 23,010 individuals of 98 species of volant mammals (Chiroptera). The traits reported include body mass, age, sex, reproductive stage, as well as the geographic coordinates of sampling for all taxa. Moreover, we gathered information on forearm length for bats and body length and tail length for rodents and marsupials. No copyright restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data.

10.
Exp Appl Acarol ; 69(1): 73-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912332

RESUMO

Ticks associated with bats have been poorly documented in the Neotropical Zoogeographical Region. In this study, a total of 1028 bats were sampled for tick infestations in the southern portion of the Brazilian Pantanal. A total of 368 ticks, morphologically identified as Ornithodoros hasei (n = 364) and O. mimon (n = 4), were collected from the following bat species: Artibeus planirostris, Platyrrhinus lineatus, Phyllostomus hastatus, Mimon crenulatum and Noctilio albiventris. Morphological identification of O. hasei was confirmed by molecular analysis. Regarding the most abundant bat species, only 40 (6.2%) out of 650 A. planirostris were infested by O. hasei, with a mean intensity of 7.2 ticks per infested bat, or a mean abundance of 0.44 ticks per sampled bat. Noteworthy, one single P. hastatus was infested by 55 O. hasei larvae, in contrast to the 2.5-7.2 range of mean intensity values for the whole study. As a complement to the present study, a total of 8 museum bat specimens (6 Noctilio albiventris and 2 N. leporinus), collected in the northern region of Pantanal, were examined for tick infestations. These bats contained 176 ticks, which were all morphologically identified as O. hasei larvae. Mean intensity of infestation was 22, with a range of 1-46 ticks per infested bat. Our results suggest that A. planirostris might play an important role in the natural life cycle of O. hasei in the Pantanal.


Assuntos
Quirópteros , Ornithodoros/fisiologia , Infestações por Carrapato/veterinária , Animais , Brasil/epidemiologia , Feminino , Larva/fisiologia , Masculino , Ornithodoros/crescimento & desenvolvimento , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia
11.
Mem Inst Oswaldo Cruz ; 106(3): 274-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21655813

RESUMO

Streblidae flies are specialised parasites of bat hosts, mainly phyllostomids. There is a high richness of streblids in the savannah-like Cerrado region; however, there is little quantitative data available in parasitological indices. Here, we describe the component community, prevalence and intensity of a streblid infestation on a phyllostomid bat assemblage in Serra da Bodoquena, a Cerrado region in Southwest Brazil. We conducted surveys by capturing and inspecting bat hosts during the seven-month period between October 2004-December 2005. All the ectoparasites found on the bats were collected in the field and then counted and identified in the laboratory. We captured 327 bats belonging to 13 species, of which eight species were parasitized by 17 species of streblids. Carollia perspicillata and Glossophaga soricina were infested with seven streblid species, whereas the other bat species were infested with four or fewer streblid species. Megistopoda proxima and Aspidoptera falcata flies were found on Sturnira lilium, and Trichobius joblingi was the most prevalent fly on C. perspicillata. Megistopoda aranea and Aspidoptera phyllostomatis were highly prevalent and had a high intensity of infestation on Artibeus planirostris. Overall comparisons of the available data suggest that the component communities of streblids vary more between the Cerrado and Atlantic Forest phytogeographical regions than between localities within the same phytogeographical region.


Assuntos
Quirópteros/parasitologia , Dípteros/fisiologia , Ectoparasitoses/parasitologia , Animais , Brasil/epidemiologia , Quirópteros/classificação , Ectoparasitoses/epidemiologia , Interações Hospedeiro-Parasita , Prevalência , Especificidade da Espécie
12.
Mem. Inst. Oswaldo Cruz ; 106(3): 274-278, May 2011. tab
Artigo em Inglês | LILACS | ID: lil-589034

RESUMO

Streblidae flies are specialised parasites of bat hosts, mainly phyllostomids. There is a high richness of streblids in the savannah-like Cerrado region; however, there is little quantitative data available in parasitological indices. Here, we describe the component community, prevalence and intensity of a streblid infestation on a phyllostomid bat assemblage in Serra da Bodoquena, a Cerrado region in Southwest Brazil. We conducted surveys by capturing and inspecting bat hosts during the seven-month period between October 2004-December 2005. All the ectoparasites found on the bats were collected in the field and then counted and identified in the laboratory. We captured 327 bats belonging to 13 species, of which eight species were parasitized by 17 species of streblids. Carollia perspicillata and Glossophaga soricina were infested with seven streblid species, whereas the other bat species were infested with four or fewer streblid species. Megistopoda proxima and Aspidoptera falcata flies were found on Sturnira lilium, and Trichobius joblingi was the most prevalent fly on C. perspicillata. Megistopoda aranea and Aspidoptera phyllostomatis were highly prevalent and had a high intensity of infestation on Artibeus planirostris. Overall comparisons of the available data suggest that the component communities of streblids vary more between the Cerrado and Atlantic Forest phytogeographical regions than between localities within the same phytogeographical region.


Assuntos
Animais , Quirópteros , Dípteros/fisiologia , Ectoparasitoses , Brasil , Quirópteros , Ectoparasitoses , Interações Hospedeiro-Parasita , Prevalência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA