Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Genomics ; 25(1): 89, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254050

RESUMO

Several indigenous cattle breeds in Sweden are endangered. Conservation of their genetic diversity and genomic characterization is a priority.Whole-genome sequences (WGS) with a mean coverage of 25X, ranging from 14 to 41X were obtained for 30 individuals of the breeds Fjällko, Fjällnära, Bohuskulla, Rödkulla, Ringamåla, and Väneko. WGS-based genotyping revealed 22,548,028 variants in total, comprising 18,876,115 single nucleotide polymorphisms (SNPs) and 3,671,913 indels. Out of these, 1,154,779 SNPs and 304,467 indels were novel. Population stratification based on roughly 19 million SNPs showed two major groups of the breeds that correspond to northern and southern breeds. Overall, a higher genetic diversity was observed in the southern breeds compared to the northern breeds. While the population stratification was consistent with previous genome-wide SNP array-based analyses, the genealogy of the individuals inferred from WGS based estimates turned out to be more complex than expected from previous SNP-array based estimates. Polymorphisms and their predicted phenotypic consequences were associated with differences in the coat color phenotypes between the northern and southern breeds. Notably, these high-consequence polymorphisms were not represented in SNP arrays, which are used routinely for genotyping of cattle breeds.This study is the first WGS-based population genetic analysis of Swedish native cattle breeds. The genetic diversity of native breeds was found to be high. High-consequence polymorphisms were linked with desirable phenotypes using whole-genome genotyping, which highlights the pressing need for intensifying WGS-based characterization of the native breeds.


Assuntos
Cruzamento , Polimorfismo de Nucleotídeo Único , Humanos , Animais , Bovinos/genética , Suécia , Sequenciamento Completo do Genoma/veterinária , Genômica
2.
J Anim Breed Genet ; 141(2): 220-234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009381

RESUMO

Speed, in the form of racing time per kilometre (km), is a performance trait of the Swedish-Norwegian Coldblooded trotter included in the joint Swedish-Norwegian genetic evaluation. A few popular stallions have dominated Coldblooded trotter breeding, which has led to an increasing average relationship between individuals in the population. This study investigated the scope for broadening the breeding goal by selecting for racing time per km over different race lengths (short: 1640 m, medium: 2140 m and long: 2640 m), as this could encourage the use of breeding sires that are less related to the population. Performance data on three- to 12-year-old Coldblooded trotters in all Swedish races run 1995-2021 were obtained from the Swedish Trotting Association. These data consisted of 46,356 observations for 8375 horses in short-distance races, 430,512 observations for 11,193 horses in medium-distance races and 11,006 observations for 3341 horses in long-distance races. Variance components and genetic correlations were calculated using a trivariate animal model with Gibbs sampling from the BLUPF90 suite of programs. Breeding values for the three traits were then estimated using univariate animal models with the same fixed and random effects as in the trivariate model. Heritability estimates of 0.27-0.28 and genetic correlations between racing time per km at the different distances of 0.97-0.99 were obtained. Despite the strong genetic correlation between the traits, there was some re-ranking among the top 10 and top 30 stallions based on distance-specific breeding values. Estimated rank correlation between breeding values for racing time per km in short- and medium-distance races was 0.86, while between short- and long-distance races and between medium- and long-distance races it was 0.61. Mean relationship within the top 10 and top 30 stallions based on breeding values for racing time per km at each distance was 0.31-0.33 and 0.23-0.24 while mean relationship to the rest of the population ranged from 0.17 to 0.18 for all groups, although the 10 and 30 top-ranking stallions differed somewhat in the traits. Estimated average increase in inbreeding was 0.1% per year of birth and 1.2% per generation. The strong genetic correlation between racing time per km at different distances did not support their use as genetically distinct traits. Re-ranking of stallions for racing time per km at different race lengths could favour the use of a larger number of stallions in breeding, but according to our results it would not promote the use of stallions that are less related to the total population. Other traits like longevity or health traits, for example, career length and orthopaedic status, may be more relevant in broadening the breeding goal and preventing a few sires dominating future breeding, and this would be interesting to study further.


Assuntos
Cruzamento , Cavalos , Animais , Masculino , Cavalos/genética , Endogamia , Noruega , Fenótipo , Suécia
3.
Genet Sel Evol ; 55(1): 89, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082412

RESUMO

BACKGROUND: In domesticated animals, many important traits are complex and regulated by a large number of genes, genetic interactions, and environmental influences. The ability of Icelandic horses to perform the gait 'pace' is largely influenced by a single mutation in the DMRT3 gene, but genetic modifiers likely exist. The aim of this study was to identify novel genetic factors that influence pacing ability and quality of the gait through a genome-wide association study (GWAS) and correlate new findings to previously identified quantitative trait loci (QTL) and mutations. RESULTS: Three hundred and seventy-two Icelandic horses were genotyped with the 670 K+ Axiom Equine Genotyping Array, of which 362 had gait scores from breeding field tests. A GWAS revealed several SNPs on Equus caballus chromosomes (ECA) 4, 9, and 20 that were associated (p < 1.0 × 10-5) with the breeding field test score for pace. The two novel QTL on ECA4 and 9 were located within the RELN and STAU2 genes, respectively, which have previously been associated with locomotor behavior in mice. Haplotypes were identified and the most frequent one for each of these two QTL had a large favorable effect on pace score. The second most frequent haplotype for the RELN gene was positively correlated with scores for tölt, trot, gallop, and canter. Similarly, the second most frequent haplotype for the STAU2 gene had favorable effects on scores for trot and gallop. Different genotype ratios of the haplotypes in the RELN and STAU2 genes were also observed in groups of horses with different levels of pacing ability. Furthermore, interactions (p < 0.05) were detected for the QTL in the RELN and STAU2 genes with the DMRT3 gene. The novel QTL on ECA4, 9, and 20, along with the effects of the DMRT3 variant, were estimated to account jointly for 27.4% of the phenotypic variance of the gait pace. CONCLUSIONS: Our findings provide valuable information about the genetic architecture of pace beyond the contribution of the DMRT3 gene and indicate genetic interactions that contribute to the complexity of this trait. Further investigation is needed to fully understand the underlying genetic factors and interactions.


Assuntos
Estudo de Associação Genômica Ampla , Fatores de Transcrição , Cavalos/genética , Animais , Camundongos , Islândia , Fatores de Transcrição/genética , Genótipo , Marcha/genética , Polimorfismo de Nucleotídeo Único
4.
J Anim Breed Genet ; 140(4): 366-375, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36852464

RESUMO

Assessment protocols to describe the various aspects of conformation, gait and jumping traits on a linear scale were introduced at young horse tests for Swedish Warmblood horses in 2013. The traits scored on a linear scale are assumed to be less subjective and more easily compared across populations than the traditional evaluated traits that are scored relative to the breeding goal. However, the resulting number of traits is considerable, and several of the traits are correlated. The aim of this study was to investigate the interrelationship between the different evaluated and linearly scored traits in Swedish Warmbloods using factor analysis. In total, 20,935 horses born 1996-2017 had information on evaluated traits, and 5450 of these also had linearly scored trait records assessed since 2014 when the protocol was updated. A factor analysis with varimax rotation was performed separately for evaluated and linearly scored traits using the Psych package in R. Height at withers was included in both analyses. A total of four factors for evaluated traits and 14 factors for linearly scored traits were kept for further analysis. Missing values for individual traits in horses with linearly scored trait records were imputed based on correlated traits before factor scores were calculated using factor loadings. Genetic parameters for, and correlations between, the resulting underlying factors were estimated using multiple-trait animal models in the BLUPF90 package. Heritability estimates were on a similar level as for the traits currently used in the genetic evaluation, ranging from 0.05 for the factor for linearly scored traits named L.behaviour (dominated by traits related to behaviour) to 0.59 for the factor for evaluated traits named E.size (dominated by height at withers and conformation). For both types of traits, separate factors were formed for jumping and gait traits, as well as for body size. High genetic correlations were estimated between such corresponding factors for evaluated traits and factors for linearly scored traits. In conclusion, factor analysis could be used to reduce the number of traits to be included in multiple-trait genetic evaluation or in genomic analysis for warmblood horses. It can also contribute to a better understanding of the interrelationships among the assessed traits and be useful to decide on subgroups of traits to be used in several multiple-trait evaluations on groups of original traits.


Assuntos
Marcha , Cavalos/genética , Animais , Suécia , Marcha/genética , Fenótipo , Tamanho Corporal , Análise Fatorial
5.
Evol Appl ; 16(2): 530-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793681

RESUMO

The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective article, we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we also look ahead, discussing how CeMEB's achievements and lessons can be used as a springboard to the future of marine evolutionary biology.

6.
J Anim Breed Genet ; 140(3): 295-303, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36645266

RESUMO

Swedish Red (SR) and Swedish Holstein (SH) are the dominating commercial dairy cattle breeds in Sweden. Both breeds have undergone substantial changes during the last half century due to intensive selection for breeding goal traits, but also resulting from increased international exchange of breeding animals and genetic drift. The aim of this study was to learn more about changes in genomic diversity and inbreeding in these two breeds over time. Therefore, semen samples from old bulls were genotyped using the 150K Genomic Profiler SNP array and combined with 50K SNP array genotype data, obtained for more recent bulls from the Nordic Cattle Genetic Evaluation. Different measures of level of homozygosity, genomic inbreeding, relatedness and changes in allele frequency were estimated for bulls born during different time periods from the 1950s until 2020. In total, more than 33,000 SNPs for 9737 SR and 5041 SH bulls were included in the analysis using PLINK v1.9. The results showed higher average homozygosity for SR than for SH bulls up to around 2000, but the difference was very small after that. The average inbreeding coefficients based on deviation from expected homozygosity as well as on runs of homozygosity decreased until the early 1980s in both breeds, whereafter they started to increase again for SH, but stayed more stable for SR. From the 1990s onwards, SH displayed higher average inbreeding coefficients than SR. In the last studied birth year group (2015-2020), the mean inbreeding coefficient based on runs of homozygosity was 5.9% for SH and 3.7% for SR. A principal component analysis showed a pattern of genetic relationships related to the birth year period of the bulls, illustrating the gradual change of the genetic material within each breed. The change in allele frequency over time was generally larger for SH than for SR. The results show that the inbreeding level was higher half a century ago than at present, and the inbreeding levels were lower than in some other studied populations. Still, the increase seen for inbreeding coefficients and homozygosity, especially in SH during recent years, should be considered in future breeding strategies.


Assuntos
Genoma , Endogamia , Bovinos/genética , Animais , Masculino , Suécia , Linhagem , Genótipo , Genômica/métodos , Homozigoto , Polimorfismo de Nucleotídeo Único
7.
J Anim Breed Genet ; 140(1): 79-91, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35830346

RESUMO

In many European warmblood studbooks, clear specialization toward either jumping or dressage horses is evident. The Swedish Warmblood (SWB) is also undergoing such specialization, creating a possible need for separate breeding programs and a discipline-specific Young Horse Test (YHT). This study investigated how far specialization of the SWB breed has proceeded and the potential consequences. Individuals in a population of 122,054 SWB horses born between 1980 and 2020 were categorized according to pedigree as jumping (J), dressage (D), allround (AR), or thoroughbred (Th). Data on 8,713 J horses and 6,477 D horses assessed for eight traits in YHT 1999-2020 were used to estimate genetic parameters within and between J and D horses and between different periods. Future scenarios in which young horses are assessed for either jumping or dressage traits at YHT were also analyzed. More than 80% of horses born in 1980-1985 were found to be AR horses, while 92% of horses born in 2016-2020 belonged to a specialized category. The average relationship within J or D category was found to increase during the past decade, whereas the relationship between these categories decreased. Heritability estimates for gait traits were 0.42-0.56 for D horses and 0.25-0.38 for J horses. For jumping traits, heritability estimates were 0.17-0.26 for J horses and 0.10-0.18 for D horses. Genetic correlations between corresponding traits assessed in J and D horses were within the range 0.48-0.81, with a tendency to be lower in the late study period. In the future scenarios, heritability and genetic variance both decreased for traits that were not assessed in all horses, indicating that estimation of breeding value and genetic progress for these traits could be affected by a specialized YHT. However, ranking of sires based on estimated breeding values (EBVs) and accuracy of EBVs was only slightly altered for discipline-specific traits. With continued specialization in SWB, specialization of the YHT should thus be considered.


Assuntos
Cavalos/genética , Animais
8.
Int J Qual Stud Health Well-being ; 17(1): 2090659, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35726172

RESUMO

PURPOSE: The aim was to describe experiences of the reconciliation process when living with insulin treated diabetes. METHODS: The study has a qualitative descriptive design, based upon nineteen in- depth interviews with persons diagnosed with insulin treated diabetes, analysed using qualitative content analysis. RESULTS: The study show the reconciliation process during different time periods that appeared as domains in the interviews. The time at diagnosis showed experiences of striving for control getting insights and knowledge. It meant striving for control of life circumstance changes, supported by professionals but also from others. In Presence showed developing strategies as a tool struggling for balance in body and life and the need of evaluating relations to others. Future was sometimes avoided as this might lead to speculations about a future life with threats and uncertainty about disease complications, as well as adaption. This meant on the same time an uncertainty, as a degree of risk-taking and hope for the best. CONCLUSIONS: Persons with insulin treated diabetes need to develop flexible strategies for daily life to continuously re-evaluate their planning for attaining reconciliation. A conclusion is also that these persons need to develop a flexible regime that facilitates both quality of life and medical outcomes to reach reconciliation.


Assuntos
Diabetes Mellitus , Qualidade de Vida , Adaptação Psicológica , Humanos , Insulina/uso terapêutico , Pesquisa Qualitativa
9.
Genet Sel Evol ; 54(1): 4, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062868

RESUMO

BACKGROUND: Warmblood fragile foal syndrome (WFFS) is a monogenetic defect caused by a recessive lethal missense point mutation in the procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 gene (PLOD1, c.2032G>A). The majority of homozygous WFFS horses are aborted during gestation. Clinical signs of affected horses include fragile skin, skin and mucosa lacerations, hyperextension of the articulations, and hematomas. In spite of its harmful effect, a relatively high frequency of WFFS carriers has been found in Warmblood horses, suggesting a heterozygote advantage. Thus, in this study our aims were to: (1) estimate the frequency of WFFS carriers in the Swedish Warmblood breed (SWB), (2) estimate the effect of WFFS carrier genotype on performance traits in two SWB subpopulations bred for different disciplines, and (3) simulate the potential effects of balancing selection and different selection strategies on the frequency of carriers. METHODS: In total, 2288 SWB sport horses born between 1971 and 2020 were tested for the WFFS mutation and had estimated breeding values (EBV) for ten traditional evaluating and 50 linear descriptive traits. RESULTS: The frequency of WFFS carriers calculated from a pool of 511 randomly selected SWB horses born in 2017 was equal to 7.4% and ranged from 0.0 to 12.0% among the whole set of tested SWB horses, starting from 1971 till 2020. The effect of the WFFS carrier genotype was significant for several EBV mainly related to movements and dressage traits and especially for horses not bred for the show jumping discipline. Using simulation, we showed that balancing selection can maintain a recessive lethal allele in populations such as the SWB breed over generations and that the frequency is expected to slowly decrease in absence of balancing selection. Finally, we showed that selection against carrier sires can result in a more rapid decrease of the frequency of the mutant allele over time. CONCLUSION: Further research is needed to confirm the apparent association between equine performance and the WFFS carrier genotype. Identification of such associations or new causative mutations for horse performance traits can serve as new tools in horse breeding to select for healthy, sustainable, and better performing horses.


Assuntos
Homozigoto , Alelos , Animais , Genótipo , Cavalos/genética , Mutação , Suécia
11.
BMC Genomics ; 22(1): 267, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853519

RESUMO

BACKGROUND: The back plays a vital role in horse locomotion, where the spine functions as a spring during the stride cycle. A complex interaction between the spine and the muscles of the back contribute to locomotion soundness, gait ability, and performance of riding and racehorses. Conformation is commonly used to select horses for breeding and performance in multiple horse breeds, where the back and croup conformation plays a significant role. The conformation of back and croup plays an important role on riding ability in Icelandic horses. However, the genes behind this trait are still unknown. Therefore, the aim of this study was to identify genomic regions associated with conformation of back and croup in Icelandic horses and to investigate their effects on riding ability. One hundred seventy-seven assessed Icelandic horses were included in the study. A genome-wide association analysis was performed using the 670 K+ Axiom Equine Genotyping Array, and the effects of different haplotypes in the top associated region were estimated for riding ability and additional conformation traits assessed during breeding field tests. RESULTS: A suggestive quantitative trait loci (QTL) for the score of back and croup was detected on Equus caballus (ECA) 22 (p-value = 2.67 × 10- 7). Haplotype analysis revealed two opposite haplotypes, which resulted in higher and lower scores of the back and croup, respectively (p-value < 0.001). Horses with the favorable haplotype were more inclined to have a well-balanced backline with an uphill conformation and had, on average, higher scores for the lateral gaits tölt (p-value = 0.02) and pace (p-value = 0.004). This genomic region harbors three genes: C20orf85, ANKRD60 and LOC100056167. ANKRD60 is associated with body height in humans. C20orf85 and ANKRD60 are potentially linked to adolescent idiopathic scoliosis in humans. CONCLUSIONS: Our results show that the detected QTL for conformation of back and croup is of importance for quality of lateral gaits in Icelandic horses. These findings could result in a genetic test to aid in the selection of breeding horses, thus they are of major interest for horse breeders. The results may also offer a gateway to comparative functional genomics by potentially linking both motor laterality and back inclination in horses with scoliosis in humans.


Assuntos
Marcha , Cavalos/genética , Locos de Características Quantitativas , Animais , Marcha/genética , Estudo de Associação Genômica Ampla , Fenótipo
12.
Genet Sel Evol ; 52(1): 52, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887549

RESUMO

BACKGROUND: Thousands of years of natural and artificial selection have resulted in indigenous cattle breeds that are well-adapted to the environmental challenges of their local habitat and thereby are considered as valuable genetic resources. Understanding the genetic background of such adaptation processes can help us design effective breeding objectives to preserve local breeds and improve commercial cattle. To identify regions under putative selection, GGP HD 150 K single nucleotide polymorphism (SNP) arrays were used to genotype 106 individuals representing five Swedish breeds i.e. native to different regions and covering areas with a subarctic cold climate in the north and mountainous west, to those with a continental climate in the more densely populated south regions. RESULTS: Five statistics were incorporated within a framework, known as de-correlated composite of multiple signals (DCMS) to detect signatures of selection. The obtained p-values were adjusted for multiple testing (FDR < 5%), and significant genomic regions were identified. Annotation of genes in these regions revealed various verified and novel candidate genes that are associated with a diverse range of traits, including e.g. high altitude adaptation and response to hypoxia (DCAF8, PPP1R12A, SLC16A3, UCP2, UCP3, TIGAR), cold acclimation (AQP3, AQP7, HSPB8), body size and stature (PLAG1, KCNA6, NDUFA9, AKAP3, C5H12orf4, RAD51AP1, FGF6, TIGAR, CCND2, CSMD3), resistance to disease and bacterial infection (CHI3L2, GBP6, PPFIBP1, REP15, CYP4F2, TIGD2, PYURF, SLC10A2, FCHSD2, ARHGEF17, RELT, PRDM2, KDM5B), reproduction (PPP1R12A, ZFP36L2, CSPP1), milk yield and components (NPC1L1, NUDCD3, ACSS1, FCHSD2), growth and feed efficiency (TMEM68, TGS1, LYN, XKR4, FOXA2, GBP2, GBP5, FGD6), and polled phenotype (URB1, EVA1C). CONCLUSIONS: We identified genomic regions that may provide background knowledge to understand the mechanisms that are involved in economic traits and adaptation to cold climate in cattle. Incorporating p-values of different statistics in a single DCMS framework may help select and prioritize candidate genes for further analyses.


Assuntos
Aclimatação , Bovinos/genética , Locos de Características Quantitativas , Seleção Artificial , Altitude , Animais , Bovinos/fisiologia , Temperatura Baixa , Linhagem , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
13.
Sci Rep ; 10(1): 13153, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753654

RESUMO

Domestic animal populations are often characterised by high rates of inbreeding and low effective population sizes due to selective breeding practices. These practices can result in otherwise rare recessive deleterious alleles drifting to high frequencies, resulting in reduced fertility rates. This study aimed to identify potential recessive lethal haplotypes in the Thoroughbred horse breed, a closed population that has been selectively bred for racing performance. In this study, we identified a haplotype in the LY49B gene that shows strong evidence of being homozygous lethal, despite having high frequencies of heterozygotes in Thoroughbreds and other domestic horse breeds. Variant analysis of whole-genome sequence data identified two SNPs in the 3'UTR of the LY49B gene that may result in loss of function. Analysis of transcriptomic data from equine embryonic tissue revealed that LY49B is expressed in the trophoblast during placentation stage of development. These findings suggest that LY49B may have an essential, but as yet unknown function in the implantation stage of equine development. Further investigation of this region may allow for the development of a genetic test to improve fertility rates in horse populations. Identification of other lethal variants could assist in improving natural levels of fertility in horse populations.


Assuntos
Regiões 3' não Traduzidas , Cruzamento , Haplótipos , Cavalos/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Fertilidade/genética , Estudo de Associação Genômica Ampla , Masculino
14.
Animals (Basel) ; 10(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521830

RESUMO

Horses are nowadays mainly used for sport and leisure activities, and several local breeds, traditionally used in agriculture, have been exposed to a dramatic loss in population size and genetic diversity. The loss of genetic diversity negatively impacts individual fitness and reduces the potential long-term survivability of a breed. Recent advances in molecular biology and bioinformatics have allowed researchers to explore biodiversity one step further. This study aimed to evaluate the loss of genetic variability and identify genomic regions under selection pressure in the Bardigiano breed based on GGP Equine70k SNP data. The effective population size based on Linkage Disequilibrium (Ne) was equal to 39 horses, and it showed a decline over time. The average inbreeding based on runs of homozygosity (ROH) was equal to 0.17 (SD = 0.03). The majority of the ROH were relatively short (91% were ≤ 2Mbp long), highlighting the occurrence of older inbreeding, rather than a more recent occurrence. A total of eight ROH islands, shared among more than 70% of the Bardigiano horses, were found. Four of them mapped to known quantitative trait loci related to morphological traits (e.g., body size and coat color) and disease susceptibility. This study provided the first genome-wide scan of genetic diversity and selection signatures in an Italian native horse breed.

15.
Sci Rep ; 10(1): 7781, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385382

RESUMO

American lobsters (Homarus americanus) imported live into Europe as a seafood commodity have occasionally been released or escaped into the wild, within the range of an allopatric congener, the European lobster (H. gammarus). In addition to disease and competition, introduced lobsters threaten native populations through hybridisation, but morphological discriminants used for species identification are unable to discern hybrids, so molecular methods are required. We tested an array of 79 single nucleotide polymorphisms (SNPs) for their utility to distinguish 1,308 H. gammarus from 38 H. americanus and 30 hybrid offspring from an American female captured in Sweden. These loci provide powerful species assignment in Homarus, enabling the robust identification of hybrid and American individuals among a survey of European stock. Moreover, a subset panel of the 12 most powerful SNPs is sufficient to separate the two pure species, even when tissues have been cooked, and can detect the introduced component of hybrids. We conclude that these SNP loci can unambiguously identify hybrid lobsters that may be undetectable via basic morphology, and offer a valuable tool to investigate the prevalence of cryptic hybridisation in the wild. Such investigations are required to properly evaluate the potential for introgression of alien genes into European lobster populations.


Assuntos
Cruzamentos Genéticos , Hibridização Genética , Nephropidae/genética , Alelos , Animais , Cruzamento , Europa (Continente) , Genótipo , Nephropidae/classificação , Polimorfismo de Nucleotídeo Único
16.
J Anim Breed Genet ; 137(2): 223-233, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31489730

RESUMO

Equine insect bite hypersensitivity (IBH) is a pruritic skin allergy caused primarily by biting midges, Culicoides spp. IBH susceptibility has polygenic inheritance and occurs at high frequencies in several horse breeds worldwide, causing increased costs and reduced welfare of affected horses. The aim of this study was to identify and validate single nucleotide polymorphisms (SNPs) associated with equine IBH susceptibility. After quality control, 33,523 SNPs were included in a Bayesian genome-wide association study on 177 affected and 178 unaffected Icelandic horses. We report associated regions in E. caballus (ECA) 1, 3, 15 and 18, overlapping with known IBH QTLs in horses, and novel regions containing several genes, together explaining 11.46% of the total genetic variance. For validation, three SNPs on ECA 1 and ECA X (explaining the largest percentage of genetic variance) within 1-mb genomic windows for IBH were genotyped in an independent population of 280 Exmoor ponies. The associated genomic region (152-153 mb) on ECA 1 was confirmed in Exmoor ponies and contains the AQR gene involved in splicing processes and a long non-coding RNA. This study confirms the polygenic nature of IBH susceptibility and suggests a role of transcriptional regulatory mechanisms (e.g., alternative splicing) for IBH predisposition in these horse breeds.


Assuntos
Doenças dos Cavalos/genética , Cavalos/genética , Hipersensibilidade/veterinária , Mordeduras e Picadas de Insetos/veterinária , Animais , Cruzamento , Mapeamento Cromossômico/veterinária , Feminino , Variação Genética , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Hipersensibilidade/genética , Mordeduras e Picadas de Insetos/imunologia , Masculino , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
17.
Genes (Basel) ; 10(12)2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783652

RESUMO

The equestrian sport horse Swedish Warmblood (SWB) originates from versatile cavalry horses. Most modern SWB breeders have specialized their breeding either towards show jumping or dressage disciplines. The aim of this study was to explore the genomic structure of SWB horses to evaluate the presence of genomic subpopulations, and to search for signatures of selection in subgroups of SWB with high or low breeding values (EBVs) for show jumping. We analyzed high density genotype information from 380 SWB horses born in the period 2010-2011, and used Principal Coordinates Analysis and Discriminant Analysis of Principal Components to detect population stratification. Fixation index and Cross Population Extended Haplotype Homozygosity scores were used to scan the genome for potential signatures of selection. In accordance with current breeding practice, this study highlights the development of two separate breed subpopulations with putative signatures of selection in eleven chromosomes. These regions involve genes with known function in, e.g., mentality, endogenous reward system, development of connective tissues and muscles, motor control, body growth and development. This study shows genetic divergence, due to specialization towards different disciplines in SWB horses. This latter evidence can be of interest for SWB and other horse studbooks encountering specialized breeding.


Assuntos
Cruzamento/métodos , Cavalos/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Cavalos/genética , Desequilíbrio de Ligação , Masculino , Análise de Componente Principal , Locos de Características Quantitativas , Seleção Genética , Esportes , Suécia
18.
BMC Genomics ; 20(1): 759, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640551

RESUMO

BACKGROUND: Copy Number Variation (CNV) is a common form of genetic variation underlying animal evolution and phenotypic diversity across a wide range of species. In the mammalian genome, high frequency of CNV differentiation between breeds may be candidates for population-specific selection. However, CNV differentiation, selection and its population genetics have been poorly explored in horses. RESULTS: We investigated the patterns, population variation and gene annotation of CNV using the Axiom® Equine Genotyping Array (670,796 SNPs) from a large cohort of individuals (N = 1755) belonging to eight European horse breeds, varying from draught horses to several warmblood populations. After quality control, 152,640 SNP CNVs (individual markers), 18,800 segment CNVs (consecutive SNP CNVs of same gain/loss state or both) and 939 CNV regions (CNVRs; overlapping segment CNVs by at least 1 bp) compared to the average signal of the reference (Belgian draught horse) were identified. Our analyses showed that Equus caballus chromosome 12 (ECA12) was the most enriched in segment CNV gains and losses (~ 3% average proportion of the genome covered), but the highest number of segment CNVs were detected on ECA1 and ECA20 (regardless of size). The Friesian horses showed private SNP CNV gains (> 20% of the samples) on ECA1 and Exmoor ponies displayed private SNP CNV losses on ECA25 (> 20% of the samples). The Warmblood cluster showed private SNP CNV gains located in ECA9 and Draught cluster showed private SNP CNV losses located in ECA7. The length of the CNVRs ranged from 1 kb to 21.3 Mb. A total of 10,612 genes were annotated within the CNVRs. The PANTHER annotation of these genes showed significantly under- and overrepresented gene ontology biological terms related to cellular processes and immunity (Bonferroni P-value < 0.05). We identified 80 CNVRs overlapping with known QTL for fertility, coat colour, conformation and temperament. We also report 67 novel CNVRs. CONCLUSIONS: This work revealed that CNV patterns, in the genome of some European horse breeds, occurred in specific genomic regions. The results provide support to the hypothesis that high frequency private CNVs residing in genes may potentially be responsible for the diverse phenotypes seen between horse breeds.


Assuntos
Variações do Número de Cópias de DNA/genética , Variação Genética , Genoma/genética , Cavalos/genética , Animais , Cruzamento , Hibridização Genômica Comparativa , Europa (Continente) , Evolução Molecular , Genética Populacional , Genótipo , Fenótipo , Seleção Genética
19.
Genet Sel Evol ; 51(1): 56, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578144

RESUMO

BACKGROUND: Native cattle breeds are important genetic resources given their adaptation to the local environment in which they are bred. However, the widespread use of commercial cattle breeds has resulted in a marked reduction in population size of several native cattle breeds worldwide. Therefore, conservation management of native cattle breeds requires urgent attention to avoid their extinction. To this end, we genotyped nine Swedish native cattle breeds with genome-wide 150 K single nucleotide polymorphisms (SNPs) to investigate the level of genetic diversity and relatedness between these breeds. RESULTS: We used various SNP-based approaches on this dataset to connect the demographic history with the genetic diversity and population structure of these Swedish cattle breeds. Our results suggest that the Väne and Ringamåla breeds originating from southern Sweden have experienced population isolation and have a low genetic diversity, whereas the Fjäll breed has a large founder population and a relatively high genetic diversity. Based on the shared ancestry and the constructed phylogenetic trees, we identified two major clusters in Swedish native cattle. In the first cluster, which includes Swedish mountain cattle breeds, there was little differentiation among the Fjäll, Fjällnära, Swedish Polled, and Bohus Polled breeds. The second cluster consists of breeds from southern Sweden: Väne, Ringamåla and Swedish Red. Interestingly, we also identified sub-structuring in the Fjällnära breed, which indicates different breeding practices on the farms that maintain this breed. CONCLUSIONS: This study represents the first comprehensive genome-wide analysis of the genetic relatedness and diversity in Swedish native cattle breeds. Our results show that different demographic patterns such as genetic isolation and cross-breeding have shaped the genomic diversity of Swedish native cattle breeds and that the Swedish mountain breeds have retained their authentic distinct gene pool without significant contribution from any of the other European cattle breeds that were included in this study.


Assuntos
Bovinos/genética , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Animais , Característica Quantitativa Herdável , Suécia
20.
BMC Genomics ; 20(1): 717, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533613

RESUMO

BACKGROUND: A growing demand for improved physical skills and mental attitude in modern sport horses has led to strong selection for performance in many warmblood studbooks. The aim of this study was to detect genomic regions with low diversity, and therefore potentially under selection, in Swedish Warmblood horses (SWB) by analysing high-density SNP data. To investigate if such signatures could be the result of selection for equestrian sport performance, we compared our SWB SNP data with those from Exmoor ponies, a horse breed not selected for sport performance traits. RESULTS: The genomic scan for homozygous regions identified long runs of homozygosity (ROH) shared by more than 85% of the genotyped SWB individuals. Such ROH were located on ECA4, ECA6, ECA7, ECA10 and ECA17. Long ROH were instead distributed evenly across the genome of Exmoor ponies in 77% of the chromosomes. Two population differentiation tests (FST and XP-EHH) revealed signatures of selection on ECA1, ECA4, and ECA6 in SWB horses. CONCLUSIONS: Genes related to behaviour, physical abilities and fertility, appear to be targets of selection in the SWB breed. This study provides a genome-wide map of selection signatures in SWB horses, and ground for further functional studies to unravel the biological mechanisms behind complex traits in horses.


Assuntos
Cruzamento , Genômica , Cavalos/genética , Esportes , Animais , Feminino , Técnicas de Genotipagem , Homozigoto , Cavalos/fisiologia , Endogamia , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA