Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Acta Biomater ; 173: 231-246, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38465268

RESUMO

Enterocutaneous fistula (ECF) is a severe medical condition where an abnormal connection forms between the gastrointestinal tract and skin. ECFs are, in most cases, a result of surgical complications such as missed enterotomies or anastomotic leaks. The constant leakage of enteric and fecal contents from the fistula site leads to skin breakdown and increases the risk of infection. Despite advances in surgical techniques and postoperative management, ECF accounts for significant mortality rates, estimated between 15-20%, and causes debilitating morbidity. Therefore, there is a critical need for a simple and effective method to seal and heal ECF. Injectable hydrogels with combined properties of robust mechanical properties and cell infiltration/proliferation have the potential to block and heal ECF. Herein, we report the development of an injectable nanoengineered adhesive hydrogel (INAH) composed of a synthetic nanosilicate (Laponite®) and a gelatin-dopamine conjugate for treating ECF. The hydrogel undergoes fast cross-linking using a co-injection method, resulting in a matrix with improved mechanical and adhesive properties. INAH demonstrates appreciable blood clotting abilities and is cytocompatible with fibroblasts. The adhesive properties of the hydrogel are demonstrated in ex vivo adhesion models with skin and arteries, where the volume stability in the hydrated internal environment facilitates maintaining strong adhesion. In vivo assessments reveal that the INAH is biocompatible, supporting cell infiltration and extracellular matrix deposition while not forming fibrotic tissue. These findings suggest that this INAH holds promising translational potential for sealing and healing ECF.


Assuntos
Fístula Intestinal , Adesivos Teciduais , Humanos , Hidrogéis/farmacologia , Adesivos , Gelatina , Fístula Intestinal/terapia
2.
Adv Drug Deliv Rev ; 203: 115142, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37967768

RESUMO

As miniaturized and simplified stem cell-derived 3D organ-like structures, organoids are rapidly emerging as powerful tools for biomedical applications. With their potential for personalized therapeutic interventions and high-throughput drug screening, organoids have gained significant attention recently. In this review, we discuss the latest developments in engineering organoids and using materials engineering, biochemical modifications, and advanced manufacturing technologies to improve organoid culture and replicate vital anatomical structures and functions of human tissues. We then explore the diverse biomedical applications of organoids, including drug development and disease modeling, and highlight the tools and analytical techniques used to investigate organoids and their microenvironments. We also examine the latest clinical trials and patents related to organoids that show promise for future clinical translation. Finally, we discuss the challenges and future perspectives of using organoids to advance biomedical research and potentially transform personalized medicine.


Assuntos
Pesquisa Biomédica , Organoides , Humanos , Células-Tronco , Medicina de Precisão/métodos , Pesquisa Biomédica/métodos , Desenvolvimento de Medicamentos
3.
Biomed Microdevices ; 25(4): 37, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740819

RESUMO

Trans-endothelial electrical resistance (TEER) is one of the most widely used indicators to quantify the barrier integrity of endothelial layers. Over the last decade, the integration of TEER sensors into organ-on-a-chip (OOC) platforms has gained increasing interest for its efficient and effective measurement of TEER in OOCs. To date, microfabricated electrodes or direct insertion of wires has been used to integrate TEER sensors into OOCs, with each method having advantages and disadvantages. In this study, we developed a TEER-SPE chip consisting of carbon-based screen-printed electrodes (SPEs) embedded in a poly(methyl methacrylate) (PMMA)-based multi-layered microfluidic device with a porous poly(ethylene terephthalate) membrane in-between. As proof of concept, we demonstrated the successful cultures of hCMEC/D3 cells and the formation of confluent monolayers in the TEER-SPE chip and obtained TEER measurements for 4 days. Additionally, the TEER-SPE chip could detect changes in the barrier integrity due to shear stress or an inflammatory cytokine (i.e., tumor necrosis factor-α). The novel approach enables a low-cost and facile fabrication of carbon-based SPEs on PMMA substrates and the subsequent assembly of PMMA layers for rapid prototyping. Being cost-effective and cleanroom-free, our method lowers the existing logistical and technical barriers presenting itself as another step forward to the broader adoption of OOCs with TEER measurement capability.


Assuntos
Sistemas Microfisiológicos , Polimetil Metacrilato , Impedância Elétrica , Carbono , Eletrodos
4.
Macromol Biosci ; 23(12): e2300276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37534566

RESUMO

Several microfabrication technologies have been used to engineer native-like skeletal muscle tissues. However, the successful development of muscle remains a significant challenge in the tissue engineering field. Muscle tissue engineering aims to combine muscle precursor cells aligned within a highly organized 3D structure and biological factors crucial to support cell differentiation and maturation into functional myotubes and myofibers. In this study, the use of 3D bioprinting is proposed for the fabrication of muscle tissues using gelatin methacryloyl (GelMA) incorporating sustained insulin-like growth factor-1 (IGF-1)-releasing microparticles and myoblast cells. This study hypothesizes that functional and mature myotubes will be obtained more efficiently using a bioink that can release IGF-1 sustainably for in vitro muscle engineering. Synthesized microfluidic-assisted polymeric microparticles demonstrate successful adsorption of IGF-1 and sustained release of IGF-1 at physiological pH for at least 21 days. Incorporating the IGF-1-releasing microparticles in the GelMA bioink assisted in promoting the alignment of myoblasts and differentiation into myotubes. Furthermore, the myotubes show spontaneous contraction in the muscle constructs bioprinted with IGF-1-releasing bioink. The proposed bioprinting strategy aims to improve the development of new therapies applied to the regeneration and maturation of muscle tissues.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Fator de Crescimento Insulin-Like I/farmacologia , Engenharia Tecidual , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas , Hidrogéis/farmacologia , Hidrogéis/química , Gelatina/farmacologia , Gelatina/química , Impressão Tridimensional
5.
Adv Sci (Weinh) ; 10(24): e2301406, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271889

RESUMO

Developing theranostic devices to detect bleeding and effectively control hemorrhage in the prehospital setting is an unmet medical need. Herein, an all-in-one theranostic platform is presented, which is constructed by sandwiching silk fibroin (SF) between two silver nanowire (AgNW) based conductive electrodes to non-enzymatically diagnose local bleeding and stop the hemorrhage at the wound site. Taking advantage of the hemostatic property of natural SF, the device is composed of a shape-memory SF sponge, facilitating blood clotting, with ≈82% reduction in hemostatic time in vitro as compared with untreated blood. Furthermore, this sandwiched platform serves as a capacitive sensor that can detect bleeding and differentiate between blood and other body fluids (i.e., serum and water) via capacitance change. In addition, the AgNW electrode endows anti-infection efficiency against Escherichia coli and Staphylococcus aureus. Also, the device shows excellent biocompatibility and gradually biodegrades in vivo with no major local or systemic inflammatory responses. More importantly, the theranostic platform presents considerable hemostatic efficacy comparable with a commercial hemostat, Dengen, in rat liver bleeding models. The theranostic platform provides an unexplored strategy for the intelligent management of hemorrhage, with the potential to significantly improve patients' well-being through the integration of diagnostic and therapeutic capabilities.


Assuntos
Fibroínas , Hemostáticos , Nanofios , Ratos , Animais , Medicina de Precisão , Prata/uso terapêutico , Hemorragia/tratamento farmacológico , Hemostáticos/uso terapêutico , Hemostáticos/metabolismo
6.
Biofabrication ; 15(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37348491

RESUMO

Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.


Assuntos
Bioimpressão , Neoplasias , Humanos , Alicerces Teciduais/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Gelatina/química , Impressão Tridimensional , Hidrogéis/farmacologia , Hidrogéis/química , Fatores Biológicos , Microambiente Tumoral
7.
Adv Healthc Mater ; 12(27): e2301096, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37256647

RESUMO

Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Hidrogéis/química , Imunoterapia , Peptídeos/química , Nanoestruturas/química , Neoplasias/terapia
8.
Biofabrication ; 15(3)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37216933

RESUMO

Soft tissue defects are a common clinical challenge mostly caused by trauma, congenital anomalies and oncological surgery. Current soft tissue reconstruction options include synthetic materials (fillers and implants) and autologous adipose tissue transplantation through flap surgery and/or lipotransfer. Both reconstructive options hold important disadvantages to which vascularized adipose tissue engineering (VATE) strategies could offer solutions. In this review, we first summarized pivotal characteristics of functional adipose tissue such as the structure, function, cell types, development and extracellular matrix (ECM). Next, we discussed relevant cell sources and how they are applied in different state-of-the-art VATE techniques. Herein, biomaterial scaffolds and hydrogels, ECMs, spheroids, organoids, cell sheets, three dimensional printing and microfluidics are overviewed. Also, we included extracellular vesicles and emphasized their potential role in VATE. Lastly, current challenges and future perspectives in VATE are pointed out to help to pave the road towards clinical applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Tecido Adiposo , Materiais Biocompatíveis , Hidrogéis
9.
Bioact Mater ; 25: 360-373, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36879666

RESUMO

The tumor microenvironment consists of diverse, complex etiological factors. The matrix component of pancreatic ductal adenocarcinoma (PDAC) plays an important role not only in physical properties such as tissue rigidity but also in cancer progression and therapeutic responsiveness. Although significant efforts have been made to model desmoplastic PDAC, existing models could not fully recapitulate the etiology to mimic and understand the progression of PDAC. Here, two major components in desmoplastic pancreatic matrices, hyaluronic acid- and gelatin-based hydrogels, are engineered to provide matrices for tumor spheroids composed of PDAC and cancer-associated fibroblasts (CAF). Shape analysis profiles reveals that incorporating CAF contributes to a more compact tissue formation. Higher expression levels of markers associated with proliferation, epithelial to mesenchymal transition, mechanotransduction, and progression are observed for cancer-CAF spheroids cultured in hyper desmoplastic matrix-mimicking hydrogels, while the trend can be observed when those are cultured in desmoplastic matrix-mimicking hydrogels with the presence of transforming growth factor-ß1 (TGF-ß1). The proposed multicellular pancreatic tumor model, in combination with proper mechanical properties and TGF-ß1 supplement, makes strides in developing advanced pancreatic models for resembling and monitoring the progression of pancreatic tumors, which could be potentially applicable for realizing personalized medicine and drug testing applications.

10.
Biomaterials ; 296: 122075, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931103

RESUMO

Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Humanos , SARS-CoV-2 , Eletrônica , Atenção à Saúde
11.
ACS Biomater Sci Eng ; 9(3): 1629-1643, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36706038

RESUMO

Breast cancer is a heterogeneous and dynamic disease, in which cancer cells are highly responsive to alterations in the microenvironment. Today, conventional methods of detecting cancer give a rather static image of the condition of the disease, so dynamic properties such as invasiveness and metastasis are difficult to capture. In this study, conventional molecular-level evaluations of the patients with breast adenocarcinoma were combined with in vitro methods on micropatterned poly(methyl methacrylate) (PMMA) biomaterial surfaces that deform cells. A correlation between deformability of the nuclei and cancer stemness, invasiveness, and metastasis was sought. Clinical patient samples were from regions of the breast with different proximities to the tumor. Responses at the single-cell level toward the micropatterned surfaces were studied using CD44/24, epithelial cell adhesion marker (EpCAM), MUC1, and PCK. Results showed that molecular markers and shape descriptors can discriminate the cells from different proximities to the tumor center and from different patients. The cells with the most metastatic and invasive properties showed both the highest deformability and the highest level of metastatic markers. In conclusion, by using a combination of molecular markers together with nuclear deformation, it is possible to improve detection and separation of subpopulations in heterogenous breast cancer specimens at the single-cell level.


Assuntos
Neoplasias da Mama , Núcleo Celular , Humanos , Feminino , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Neoplasias da Mama/diagnóstico , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Adesão Celular , Microambiente Tumoral
12.
Adv Funct Mater ; 33(51)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558868

RESUMO

Sac embolization of abdominal aortic aneurysms (AAAs) remains clinically limited by endoleak recurrences. These recurrences are correlated with recanalization due to the presence of endothelial lining and matrix metalloproteinases (MMPs)-mediated aneurysm progression. This study incorporated doxycycline (DOX), a well-known sclerosant and MMPs inhibitor, into a shear-thinning biomaterial (STB)-based vascular embolizing hydrogel. The addition of DOX was expected to improve embolizing efficacy while preventing endoleaks by inhibiting MMP activity and promoting endothelial removal. The results showed that STBs containing 4.5% w/w silicate nanoplatelet and 0.3% w/v of DOX were injectable and had a 2-fold increase in storage modulus compared to those without DOX. STB-DOX hydrogels also reduced clotting time by 33% compared to untreated blood. The burst release of DOX from the hydrogels showed sclerosing effects after 6 h in an ex vivo pig aorta model. Sustained release of DOX from hydrogels on endothelial cells showed MMP inhibition (ca. an order of magnitude larger than control groups) after 7 days. The hydrogels successfully occluded a patient-derived abdominal aneurysm model at physiological blood pressures and flow rates. The sclerosing and MMP inhibition characteristics in the engineered multifunctional STB-DOX hydrogels may provide promising opportunities for the efficient embolization of aneurysms in blood vessels.

13.
Regen Biomater ; 9: rbac063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36196294

RESUMO

Hemorrhage is the leading cause of trauma-related deaths, in hospital and prehospital settings. Hemostasis is a complex mechanism that involves a cascade of clotting factors and proteins that result in the formation of a strong clot. In certain surgical and emergency situations, hemostatic agents are needed to achieve faster blood coagulation to prevent the patient from experiencing a severe hemorrhagic shock. Therefore, it is critical to consider appropriate materials and designs for hemostatic agents. Many materials have been fabricated as hemostatic agents, including synthetic and naturally derived polymers. Compared to synthetic polymers, natural polymers or biopolymers, which include polysaccharides and polypeptides, have greater biocompatibility, biodegradability and processibility. Thus, in this review, we focus on biopolymer-based hemostatic agents of different forms, such as powder, particles, sponges and hydrogels. Finally, we discuss biopolymer-based hemostatic materials currently in clinical trials and offer insight into next-generation hemostats for clinical translation.

14.
Adv Mater ; 34(24): e2108389, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35130584

RESUMO

The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.


Assuntos
Lentes de Contato , Córnea , Glucose , Humanos , Pressão Intraocular
15.
Micromachines (Basel) ; 13(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35056257

RESUMO

In the recent years, microfabrication technologies have been widely used in cell biology, tissue engineering, and regenerative medicine studies. Today, the implementation of microfabricated devices in cancer research is frequent and advantageous because it enables the study of cancer cells in controlled microenvironments provided by the microchips. Breast cancer is one of the most common cancers in women, and the way breast cancer cells interact with their physical microenvironment is still under investigation. In this study, we developed a transparent cell culture chip (Ch-Pattern) with a micropillar-decorated bottom that makes live imaging and monitoring of the metabolic, proliferative, apoptotic, and morphological behavior of breast cancer cells possible. The reason for the use of micropatterned surfaces is because cancer cells deform and lose their shape and acto-myosin integrity on micropatterned substrates, and this allows the quantification of the changes in morphology and through that identification of the cancerous cells. In the last decade, cancer cells were studied on micropatterned substrates of varying sizes and with a variety of biomaterials. These studies were conducted using conventional cell culture plates carrying patterned films. In the present study, cell culture protocols were conducted in the clear-bottom micropatterned chip. This approach adds significantly to the current knowledge and applications by enabling low-volume and high-throughput processing of the cell behavior, especially the cell-micropattern interactions. In this study, two different breast cancer cell lines, MDA-MB-231 and MCF-7, were used. MDA-MB-231 cells are invasive and metastatic, while MCF-7 cells are not metastatic. The nuclei of these two cell types deformed to distinctly different levels on the micropatterns, had different metabolic and proliferation rates, and their cell cycles were affected. The Ch-Pattern chips developed in this study proved to have significant advantages when used in the biological analysis of live cells and highly beneficial in the study of screening breast cancer cell-substrate interactions in vitro.

16.
Adv Biosyst ; 4(2): e1900139, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32293132

RESUMO

Cancer is a complex and heterogeneous disease, and cancer cells dynamically interact with the mechanical microenvironment such as hydrostatic pressure, fluid shear, and interstitial flow. These factors play an essential role in cell fate and circulating tumor cell heterogeneity, and can influence the cellular phenotype. In this study, a peristaltic continuous flow reactor is designed and applied to HCT-116 colorectal carcinoma cells to mimic the fluid dynamics of circulation. With this intervention, a CD44/CD24-cell subpopulation emerges, and 100 genes are significantly regulated. The expression of cells at 4 h in the flow reactor is very similar to TGF-ß treatment, which is an inducer of epithelial-mesenchymal transition. ATF3 and SERPINE1 are significantly upregulated in these groups, suggesting that the mesenchymal transition is induced through this signaling pathway. This flow reactor model is satisfactory on its own to reprogram colorectal cancer cells toward a more mesenchymal niche mimicking circulation of the blood.


Assuntos
Reatores Biológicos , Transição Epitelial-Mesenquimal/fisiologia , Modelos Biológicos , Microambiente Tumoral/fisiologia , Proliferação de Células/fisiologia , Células HCT116 , Hemodinâmica/fisiologia , Humanos , Receptores de Hialuronatos
17.
Colloids Surf B Biointerfaces ; 178: 44-55, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30826553

RESUMO

Use of soluble factors is the most common strategy to induce osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro, but it may raise potential side effects in vivo. The topographies of the substrate surfaces affect cell behavior, and this could be a promising approach to guide stem cell differentiation. Micropillars have been reported to modulate cellular and subcellular shape, and it is particularly interesting to investigate whether these changes in cell morphology can modulate gene expression and lineage commitment without chemical induction. In this study, poly(methyl methacrylate) (PMMA) films were decorated with square prism micropillars with different lateral dimensions (4, 8 and 16 µm), and the surface wettability of the substrates was altered by oxygen plasma treatment. Both, pattern dimensions and hydrophilicity, were found to affect the attachment, proliferation, and most importantly, gene expression of human dental pulp mesenchymal stem cells (DPSCs). Decreasing the pillar width and interpillar spacing of the square prism pillars enhanced cell attachment, cell elongation, and deformation of nuclei, but reduced early proliferation rate. Surfaces with 4 or 8 µm wide pillars/gaps upregulated the expression of early bone-marker genes and mineralization over 28 days of culture. Exposure to oxygen plasma increased wettability and promoted cell attachment and proliferation but delayed osteogenesis. Our findings showed that surface topography and chemistry are very useful tools in controlling cell behavior on substrates and they can also help create better implants. The most important finding is that hydrophobic micropillars on polymeric substrate surfaces can be exploited in inducing osteogenic differentiation of MSCs without any differentiation supplements.


Assuntos
Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Polimetil Metacrilato/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Osteogênese/efeitos dos fármacos , Polimetil Metacrilato/farmacologia
18.
J Biomed Mater Res B Appl Biomater ; 107(2): 366-376, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29663651

RESUMO

Cell-substrate interactions involve constant probing of microenvironment by cells. One of the responses of cells to environmental cues is to change the conformation of their cytoplasm and nucleus. We hypothesized that surface chemistry and topography could be engineered to make these differences significant enough. When designing the substrates that would accentuate these differences, we prepared surfaces carrying cell adhesive biological cues arranged in specific patterns. Collagen type I and poly(lactic acid-co-glycolic acid) (PLGA) were used to represent substrates with biological cues and those without, and these materials were decorated with four square prism micropillars with different dimensions. The nuclear deformations were analyzed using some descriptors. Nucleus area and solidity were the best descriptors in distinguishing the substrates in terms of biological cues, while nucleus area, solidity, and circularity were more sensitive to the interpillar distances. Another distinguishing factor tested was the duration of contact. Nucleus area was the only descriptor sensitive to nuclear deformation change with time. PLGA was more suitable in nuclear conformation analysis while collagen was better in cell adhesion and proliferation. These deformations lead to changes in the molecular processes and further studies are needed to better understand cell mechanobiology. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 366-376, 2019.


Assuntos
Neoplasias Ósseas , Núcleo Celular , Colágeno Tipo I , Osteossarcoma , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/química , Colágeno Tipo I/farmacologia , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Ratos , Ratos Sprague-Dawley
19.
Bioact Mater ; 3(3): 355-369, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29988483

RESUMO

Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.

20.
Sci Rep ; 6: 36917, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841297

RESUMO

Various physiological and pathological processes, such as cell differentiation, migration, attachment, and metastasis are highly dependent on nuclear elasticity. Nuclear morphology directly reflects the elasticity of the nucleus. We propose that quantification of changes in nuclear morphology on surfaces with defined topography will enable us to assess nuclear elasticity and deformability. Here, we used soft lithography techniques to produce 3 dimensional (3-D) cell culture substrates decorated with micron sized pillar structures of variable aspect ratios and dimensions to induce changes in cellular and nuclear morphology. We developed a high content image analysis algorithm to quantify changes in nuclear morphology at the single-cell level in response to physical cues from the 3-D culture substrate. We present that nuclear stiffness can be used as a physical parameter to evaluate cancer cells based on their lineage and in comparison to non-cancerous cells originating from the same tissue type. This methodology can be exploited for systematic study of mechanical characteristics of large cell populations complementing conventional tools such as atomic force microscopy and nanoindentation.


Assuntos
Técnicas de Cultura de Células/métodos , Núcleo Celular/fisiologia , Análise de Célula Única/instrumentação , Algoritmos , Linhagem Celular Tumoral , Elasticidade , Humanos , Células MCF-7 , Análise de Célula Única/métodos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA