Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
ACS Omega ; 9(28): 30015-30034, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035881

RESUMO

Sensors are widely used owing to their advantages including excellent sensing performance, user-friendliness, portability, rapid response, high sensitivity, and specificity. Sensor technologies have been expanded rapidly in recent years to offer many applications in medicine, pharmaceuticals, the environment, food safety, and national security. Various nanomaterial-based sensors have been developed for their exciting features, such as a powerful absorption band in the visible region, excellent electrical conductivity, and good mechanical properties. Natural and synthetic coumarin derivatives are attracting attention in the development of functional polymers and polymeric networks for their unique biological, optical, and photochemical properties. They are the most abundant organic molecules in medicine because of their biological and pharmacological impacts. Furthermore, coumarin derivatives can modulate signaling pathways that affect various cellular processes. This review covers the discovery of coumarins and their derivatives, the integration of nanomaterial-based sensors, and recent advances in nanomaterial-based sensing for coumarins. This review also explains how sensors work, their types, their pros and cons, and sensor studies for coumarin detection in recent years.

3.
5.
Front Plant Sci ; 10: 907, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354774

RESUMO

One third of people suffer from anemia, with iron (Fe) deficiency being the most common reason. The human diet includes seeds of staple crops, which contain Fe that is poorly bioavailable. One reason for low bioavailability is that these seeds store Fe in cellular compartments that also contain antinutrients, such as phytate. Thus, several studies have focused on decreasing phytate concentrations. In theory, as an alternative approach, Fe reserves might be directed to cellular compartments that are free of phytate, such as plastids. However, it is not known if seed plastid can represent a major Fe storage compartment in nature. To discover distinct types of Fe storage in nature, we investigated metal localizations in the seeds of more than twenty species using histochemical or X-ray based techniques. Results showed that in Rosids, the largest clade of eudicots, Fe reserves were primarily confined to the embryo of the seeds. Furthermore, inside the embryos, Fe accumulated specifically in the endodermal cell layer, a well-known feature that is mediated by VACUOLAR IRON TRANSPORTER1 (VIT1) in model plant Arabidopsis thaliana. In rice, Fe enrichment is lost around the provasculature in the mutants of VIT1 orthologs. Finally, in Carica papaya, Fe accumulated in numerous organelles resembling plastids; however, these organelles accumulated reserve proteins but not ferritin, failing to prove to be plastids. By investigating Fe distribution in distinct plant lineages, this study failed to discover distinct Fe storage patterns that can be useful for biofortification. However, it revealed Fe enrichment is widely conserved in the endodermal cell layer in a VIT1-dependent manner in the plant kingdom.

6.
Biometals ; 30(5): 685-698, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28744713

RESUMO

In plant cells, either excess or insufficient iron (Fe) concentration triggers stress responses, therefore it is strictly controlled. Proteasome-mediated degradation through ubiquitination of Fe homeostasis proteins has just become the focus of research in recent years. Deactivating ubiquitin ligases, COP9 signalosome has a central importance in the translational control of various stress responses. The aim of the study was to investigate COP9 signalosome in Fe deficiency response of Strategy I plants. In silico analysis of a set of Fe-deficiency-responsive genes was conducted against the transcriptome of Arabidopsis csn mutant lines using Genevestigator software. Induced and suppressed genes were clustered in a hierarchical way and gene ontology enrichment categories were identified. In wild-type Arabidopsis, CSN genes did not respond to iron deficiency. In csn mutant lines, under Fe-sufficient conditions, hundreds of Fe-deficiency-responsive genes were misregulated. Among the ones previously characterized for their physiological roles under Fe deficiency IRT1, NAS4, BTS, NRAMP1 were down-regulated while AHA2, MTP8, FRD3 were up-regulated. Unexpectedly, from those which were regulated in opposite ways, some had been repeatedly shown to be tightly co-regulated by the same transcription factor, FIT. Two proteins from DELLA family, which were reported to interact with FIT to repress its downstream, were found to be strikingly repressed in csn mutants. Overall, the study underlined that the absence of a functional CSN greatly impacted the regulation of Fe homeostasis-related genes, in a manner which cannot be explained simply by the induction of the master transcription factor, FIT. Correct expression of Fe deficiency-responsive genes requires an intact COP9 signalosome in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Complexo do Signalossomo COP9/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Ferro/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Complexo do Signalossomo COP9/deficiência , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Homeostase/genética , Análise em Microsséries , Anotação de Sequência Molecular , Família Multigênica , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
7.
Plant Physiol ; 174(3): 1633-1647, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28461400

RESUMO

Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Germinação , Homeostase , Ferro/metabolismo , Manganês/metabolismo , Sementes/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Teste de Complementação Genética , Germinação/genética , Modelos Biológicos , Mutação/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Sementes/genética , Espectrometria por Raios X
8.
Biometals ; 30(2): 217-235, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28150142

RESUMO

Metal transport process in plants is a determinant of quality and quantity of the harvest. Although it is among the most important of staple crops, knowledge about genes that encode for membrane-bound metal transporters is scarce in wheat. Metal tolerance proteins (MTPs) are involved in trace metal homeostasis at the sub-cellular level, usually by providing metal efflux out of the cytosol. Here, by using various bioinformatics approaches, genes that encode for MTPs in the hexaploid wheat genome (Triticum aestivum, abbreviated as Ta) were identified and characterized. Based on the comparison with known rice MTPs, the wheat genome contained 20 MTP sequences; named as TaMTP1-8A, B and D. All TaMTPs contained a cation diffusion facilitator (CDF) family domain and most members harbored a zinc transporter dimerization domain. Based on motif, phylogeny and alignment analysis, A, B and D genomes of TaMTP3-7 sequences demonstrated higher homology compared to TaMTP1, 2 and 8. With reference to their rice orthologs, TaMTP1s and TaMTP8s belonged to Zn-CDFs, TaMTP2s to Fe/Zn-CDFs and TaMTP3-7s to Mn-CDFs. Upstream regions of TaMTP genes included diverse cis-regulatory motifs, indicating regulation by developmental stage, tissue type and stresses. A scan of the coding sequences of 20 TaMTPs against published miRNAs predicted a total of 14 potential miRNAs, mainly targeting the members of most diverged groups. Expression analysis showed that several TaMTPs were temporally and spatially regulated during the developmental time-course. In grains, MTPs were preferentially expressed in the aleurone layer, which is known as a reservoir for high concentrations of iron and zinc. The work identified and characterized metal tolerance proteins in common wheat and revealed a potential involvement of MTPs in providing a sink for trace element storage in wheat grains.


Assuntos
Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Ferro/metabolismo , Proteínas de Plantas/genética , Triticum/genética , Zinco/metabolismo , Sequência de Aminoácidos , Biofortificação , Transporte Biológico , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Ferro/química , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Poliploidia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Triticum/classificação , Triticum/metabolismo , Zinco/química
9.
Plant Physiol ; 170(2): 1030-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26668333

RESUMO

Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Deficiências de Ferro , Manganês/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , DNA Bacteriano/genética , FMN Redutase/metabolismo , Técnicas de Inativação de Genes , Teste de Complementação Genética , Manganês/farmacologia , Mutagênese Insercional/genética , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
J Environ Manage ; 98: 37-42, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22245862

RESUMO

CaCO(3) is one of the most common emitter clogging factors among chemical precipitates in drip irrigation systems. Continuous acid application as a classical approach to prevent CaCO(3) clogging can be tricky, expensive and hazardous for soil. In order to develop an environmentally friendly method to address the problem, two bacterial strains, one renowned as a PGPR and the other having extensive CaCO(3) dissolving capacity, were used in treatments of artificially clogged drip irrigation emitters. Results showed the flow rates of clogged emitters significantly increased in drip lines which were treated with bacterial suspensions but no increase was observed in control drip lines which were treated with sterile nutrient broth. Furthermore, scanning electron and florescence microscopies were used to examine residual CaCO(3) precipitates. Thus, in consideration of its extensively studied PGPR characteristics, microbial treatment with Bacillus subtilis OSU-142 was shown to be promising for field applications as a novel and environmentally friendly treatment for clogged emitters of drip irrigation systems.


Assuntos
Irrigação Agrícola , Bacillus subtilis/metabolismo , Carbonato de Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA