Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837074

RESUMO

This article presents a novel approach for assessing the effects of residual stresses in laser-directed energy deposition (L-DED). The approach focuses on exploiting the potential of rapidly growing tools such as machine learning and polynomial chaos expansion for handling full-field data for measurements and predictions. In particular, the thermal expansion coefficient of thin-wall L-DED steel specimens is measured and then used to predict the displacement fields around the drilling hole in incremental hole-drilling tests. The incremental hole-drilling test is performed on cubic L-DED steel specimens and the displacement fields are visualized using a 3D micro-digital image correlation setup. A good agreement is achieved between predictions and experimental measurements.

2.
Materials (Basel) ; 12(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547387

RESUMO

This paper addresses the influence on the fatigue life induced by the implementation of a capillary-based structural health monitoring methodology, patented under the name eSHM. It consists in integrating structurally small and pressurized capillaries into the component, so that when a fatigue crack breaches the capillary network, it results in a leak flow to the open atmosphere and loss of pressure in the galleries which is detected by a pressure sensor. The novelty of the proposed system resides in the opportunity to locate the capillary according to the designer's need, as one resorts to additive manufacturing for the part production. However, the presence of these galleries in highly stressed regions raises concerns about crack initiation at the capillary itself and accelerated fatigue crack growth. This paper aims at the quantification of the influence the eSHM has on the fatigue behavior of the component and the determination whether this influence is significant or not. To that purpose, numerical simulations on a straight lug component, using the finite elements and eXtended Finite Elements Methods (XFEM), are performed. Various capillary sizes and shapes are assessed, so as to enable a general conclusion on the impact of the eSHM methodology in straight lugs.

3.
Sensors (Basel) ; 16(4)2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27110782

RESUMO

Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 µÏµ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA