Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Work Expo Health ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38816184

RESUMO

Tunnel boring machines (TBMs) are used to excavate tunnels in a manner where the rock is constantly penetrated with rotating cutter heads. Fine particles of the rock minerals are thereby generated. Workers on and in the vicinity of the TBM are exposed to particulate matter (PM) consisting of bedrock minerals including α-quartz. Exposure to respirable α-quartz remains a concern because of the respiratory diseases associated with this exposure. The particle size distribution of PM and α-quartz is of special importance because of its influence on adverse health effects, monitoring and control strategies as well as accurate quantification of α-quartz concentrations. The major aim of our study was therefore to investigate the particle size distribution of airborne PM and α-quartz generated during tunnel excavation using TBMs in an area dominated by gneiss, a metamorphic type of rock. Sioutas cascade impactors were used to collect personal samples on 3 separate days. The impactor fractionates the dust in 5 size fractions, from 10 µm down to below 0.25 µm. The filters were weighted, and the α-quartz concentrations were quantified using X-ray diffraction (XRD) analysis and the NIOSH 7500 method on the 5 size fractions. Other minerals were determined using Rietveld refinement XRD analysis. The size and elemental composition of individual particles were investigated by scanning electron microscopy. The majority of PM mass was collected on the first 3 stages (aerodynamic diameter = 10 to 0.5 µm) of the Sioutas cascade impactor. No observable differences were found for the size distribution of the collected PM and α-quartz for the 3 sampling days nor the various work tasks. However, the α-quartz proportion varied for the 3 sampling days demonstrating a dependence on geology. The collected α-quartz consisted of more particles with sizes below 1 µm than the calibration material, which most likely affected the accuracy of the measured respirable α-quartz concentrations. This potential systematic error is important to keep in mind when analyzing α-quartz from occupational samples. Knowledge of the particle size distribution is also important for control measures, which should target particle sizes that efficiently capture the respirable α-quartz concentration.

2.
Front Immunol ; 14: 1111123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776851

RESUMO

Introduction: Inhalation of nanomaterials may induce inflammation in the lung which if left unresolved can manifest in pulmonary fibrosis. In these processes, alveolar macrophages have an essential role and timely modulation of the macrophage phenotype is imperative in the onset and resolution of inflammatory responses. This study aimed to investigate, the immunomodulating properties of two industrially relevant high aspect ratio nanomaterials, namely nanocellulose and multiwalled carbon nanotubes (MWCNT), in an alveolar macrophage model. Methods: MH-S alveolar macrophages were exposed at air-liquid interface to cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and two MWCNT (NM-400 and NM-401). Following exposure, changes in macrophage polarization markers and secretion of inflammatory cytokines were analyzed. Furthermore, the potential contribution of epigenetic regulation in nanomaterial-induced macrophage polarization was investigated by assessing changes in epigenetic regulatory enzymes, miRNAs, and rRNA modifications. Results: Our data illustrate that the investigated nanomaterials trigger phenotypic changes in alveolar macrophages, where CNF exposure leads to enhanced M1 phenotype and MWCNT promotes M2 phenotype. Furthermore, MWCNT exposure induced more prominent epigenetic regulatory events with changes in the expression of histone modification and DNA methylation enzymes as well as in miRNA transcript levels. MWCNT-enhanced changes in the macrophage phenotype were correlated with prominent downregulation of the histone methyltransferases Kmt2a and Smyd5 and histone deacetylases Hdac4, Hdac9 and Sirt1 indicating that both histone methylation and acetylation events may be critical in the Th2 responses to MWCNT. Furthermore, MWCNT as well as CNF exposure led to altered miRNA levels, where miR-155-5p, miR-16-1-3p, miR-25-3p, and miR-27a-5p were significantly regulated by both materials. PANTHER pathway analysis of the identified miRNA targets showed that both materials affected growth factor (PDGF, EGF and FGF), Ras/MAPKs, CCKR, GnRH-R, integrin, and endothelin signaling pathways. These pathways are important in inflammation or in the activation, polarization, migration, and regulation of phagocytic capacity of macrophages. In addition, pathways involved in interleukin, WNT and TGFB signaling were highly enriched following MWCNT exposure. Conclusion: Together, these data support the importance of macrophage phenotypic changes in the onset and resolution of inflammation and identify epigenetic patterns in macrophages which may be critical in nanomaterial-induced inflammation and fibrosis.


Assuntos
MicroRNAs , Nanotubos de Carbono , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Epigênese Genética , Macrófagos/metabolismo , Inflamação/metabolismo , Celulose/metabolismo
3.
Environ Sci Process Impacts ; 24(8): 1243-1256, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35875923

RESUMO

Employees working in cement production plants are exposed to airborne particulate matter (PM) which may lead to lung function impairments and airway symptoms. The PM consists of raw materials, clinker and additives which vary depending on cement blend. The aim of this work was to characterize the thoracic fraction of PM with regard to size, phase composition and mixing state. Both stationary and personal impactors were used to collect size-fractionated samples in a cement production plant in Norway. Stationary samples were measured with aerosol particle counters and collected with a 13-stage cascade impactor, which were stationed at three locations of the cement production plant: at the raw meal mill, clinker conveyor belt and cement mill. Sioutas cascade impactors, and thoracic and respirable dust samplers were used in parallel for personal sampling. Additionally, particles for electron microscopy were collected with the stationary cascade impactor for size-fractionated single particle characterization. Gravimetric measurements and element compositions of the samples from the stationary impactors show that the PM mass is dominated by calcium-rich particles of size >1 µm. The size distribution results of stationary and personal impactors were similar. Characterization of single particles reveals that limestone is the dominating material in the raw meal mill, whereas clinker and limestone dominate at the clinker conveyor belt and at the cement mill. The element composition of clinker PM did not change with particle size. The PM collected on impactor stages with aerodynamic diameter cut-offs below 0.56 µm was dominated by soot and volatile secondary particles at the three locations. The number of ultrafine particles of the cement related compounds was low. Air concentrations of PM in personal respirable and thoracic samples ranged from 0.14-10 mg m-3 to 0.37-9.5 mg m-3, respectively. Considerable local variations exist, both in composition and air concentration of the PM.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbonato de Cálcio , Monitoramento Ambiental/métodos , Humanos , Tamanho da Partícula , Material Particulado/análise
4.
Sci Rep ; 10(1): 20989, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268812

RESUMO

Particulate matter (PM) emitted during laser additive manufacturing with stainless steel powder materials has been studied in detail. Three different additive manufacturing techniques were studied: selective laser melting, direct metal deposition and laser cladding. Gas flow and temperature fields accompanying the processes were numerically modeled for understanding particle growth and oxidation. Transmission and scanning electron microscopy were used for primary particle and PM characterization. The PM collected in the atmosphere during manufacturing consisted of complex aggregates/agglomerates with fractal-like geometries. The overwhelming number of particles formed in the three processes had equivalent projected area diameters within the 4-16 nm size range, with median sizes of 8.0, 9.4 and 11.2 nm. The primary particles were spherical in shape and consisted of oxides of the main steel alloying elements. Larger primary particles (> 30 nm) were not fully oxidized, but where characterized by a metallic core and an oxidic surface shell.

5.
Biomaterials ; 203: 31-42, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30851491

RESUMO

Nanocellulose is a promising bio-nanomaterial with attractive properties suitable for multiple industrial applications. The increased use of nanocellulose may lead to occupational exposure and negative health outcomes. However, knowledge on its health effects is limited, and while nanocellulose exposure may induce acute inflammatory responses in the lung, the underlying mechanisms are unknown. Alveolar macrophages are key cells in alveolar particle clearance. Their activation and function may be affected by various particles. Here, we investigated the uptake of pristine cellulose nanocrystals (CNC), and their effects on alveolar macrophage polarization and biological function. CNC uptake enhanced the secretion of several cytokines but did not on its own induce a complete macrophage polarization. In presence of macrophage activators, such as LPS/IFNG and IL4/IL13, CNC exposure enhanced the expression of M1 phenotype markers and the secretion of pro-inflammatory cytokines and chemokines, while decreasing M2 markers. CNC exposure also affected the function of activated alveolar macrophages resulting in a prominent cytokine burst and altered phagocytic activity. In conclusion, CNC exposure may result in dysregulation of macrophage activation and function that are critical in inflammatory responses in the lung.


Assuntos
Celulose/química , Celulose/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Nanopartículas/química , Fagócitos/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Macrófagos Alveolares/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Fagócitos/metabolismo , Fagócitos/ultraestrutura , Fagocitose/efeitos dos fármacos , Fenótipo
6.
Saf Health Work ; 10(4): 518-526, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890335

RESUMO

BACKGROUND: Additive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between. METHODS: Gravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed. RESULTS: Total and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions. CONCLUSION: Gravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks.

7.
Anal Bioanal Chem ; 411(2): 305-313, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30456607

RESUMO

The emission of ultrafine carbonaceous particles during the laser cutting of fiber-reinforced polymer (CFRP) composite materials was investigated. The study was based on characterization of air contaminants emitted during laser cutting of an epoxy-based CFRP material with respect to particle size distribution, particle morphology, and chemical composition. Results indicate that about 90% of the total particulate mass is present as fine particulate matter with an aerodynamic cut-off diameter of 0.25 µm, and considerable amounts of ultrafine carbonaceous particulate matter dominated by organic carbon are emitted during high-power laser cutting of CFRP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA