Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Commun ; 15(1): 3296, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632236

RESUMO

DEAD-box ATPases play crucial roles in guiding rRNA restructuring events during the biogenesis of large (60S) ribosomal subunits, but their precise molecular functions are currently unknown. In this study, we present cryo-EM reconstructions of nucleolar pre-60S intermediates that reveal an unexpected, alternate secondary structure within the nascent peptidyl-transferase-center (PTC). Our analysis of three sequential nucleolar pre-60S intermediates reveals that the DEAD-box ATPase Dbp10/DDX54 remodels this alternate base pairing and enables the formation of the rRNA junction that anchors the mature form of the universally conserved PTC A-loop. Post-catalysis, Dbp10 captures rRNA helix H61, initiating the concerted exchange of biogenesis factors during late nucleolar 60S maturation. Our findings show that Dbp10 activity is essential for the formation of the ribosome active site and reveal how this function is integrated with subsequent assembly steps to drive the biogenesis of the large ribosomal subunit.


Assuntos
RNA Helicases DEAD-box , Peptidil Transferases , Ribossomos , Proteínas de Saccharomyces cerevisiae , RNA Helicases DEAD-box/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Ribossomos/genética , Ribossomos/metabolismo , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961218

RESUMO

DEAD-box ATPases play crucial roles in guiding rRNA restructuring events during the biogenesis of large (60S) ribosomal subunits, but their precise molecular functions are currently unknown. In this study, we present cryo-EM reconstructions of nucleolar pre-60S intermediates that reveal an unexpected, alternate secondary structure within the nascent peptidyl-transferase-center (PTC). Our analysis of three sequential nucleolar pre-60S intermediates reveals that the DEAD-box ATPase Dbp10/DDX54 remodels this alternate base pairing and enables the formation of the rRNA junction that anchors the mature form of the universally conserved PTC A-loop. Post-catalysis, Dbp10 captures rRNA helix H61, initiating the concerted exchange of biogenesis factors during late nucleolar 60S maturation. Our findings show that Dbp10 activity is essential for the formation of the ribosome active site and reveal how this function is integrated with subsequent assembly steps to drive the biogenesis of the large ribosomal subunit.

3.
Nat Commun ; 14(1): 1207, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864048

RESUMO

Biogenesis of the large ribosomal (60S) subunit involves the assembly of three rRNAs and 46 proteins, a process requiring approximately 70 ribosome biogenesis factors (RBFs) that bind and release the pre-60S at specific steps along the assembly pathway. The methyltransferase Spb1 and the K-loop GTPase Nog2 are essential RBFs that engage the rRNA A-loop during sequential steps in 60S maturation. Spb1 methylates the A-loop nucleotide G2922 and a catalytically deficient mutant strain (spb1D52A) has a severe 60S biogenesis defect. However, the assembly function of this modification is currently unknown. Here, we present cryo-EM reconstructions that reveal that unmethylated G2922 leads to the premature activation of Nog2 GTPase activity and capture a Nog2-GDP-AlF4- transition state structure that implicates the direct involvement of unmodified G2922 in Nog2 GTPase activation. Genetic suppressors and in vivo imaging indicate that premature GTP hydrolysis prevents the efficient binding of Nog2 to early nucleoplasmic 60S intermediates. We propose that G2922 methylation levels regulate Nog2 recruitment to the pre-60S near the nucleolar/nucleoplasmic phase boundary, forming a kinetic checkpoint to regulate 60S production. Our approach and findings provide a template to study the GTPase cycles and regulatory factor interactions of the other K-loop GTPases involved in ribosome assembly.


Assuntos
Processamento Pós-Transcricional do RNA , Subunidades Ribossômicas Maiores de Eucariotos , Cinética , Metilação , Metiltransferases , Subunidades Ribossômicas Maiores de Eucariotos/genética , GTP Fosfo-Hidrolases/metabolismo
4.
Nat Struct Mol Biol ; 29(12): 1228-1238, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36482249

RESUMO

DEAD-box ATPases are ubiquitous enzymes essential in all aspects of RNA biology. However, the limited in vitro catalytic activities described for these enzymes are at odds with their complex cellular roles, most notably in driving large-scale RNA remodeling steps during the assembly of ribonucleoproteins (RNPs). We describe cryo-EM structures of 60S ribosomal biogenesis intermediates that reveal how context-specific RNA unwinding by the DEAD-box ATPase Spb4 results in extensive, sequence-specific remodeling of rRNA secondary structure. Multiple cis and trans interactions stabilize Spb4 in a post-catalytic, high-energy intermediate that drives the organization of the three-way junction at the base of rRNA domain IV. This mechanism explains how limited strand separation by DEAD-box ATPases is leveraged to provide non-equilibrium directionality and ensure efficient and accurate RNP assembly.


Assuntos
RNA Helicases DEAD-box , Proteínas de Saccharomyces cerevisiae , RNA Helicases DEAD-box/metabolismo , Ribonucleoproteínas/química , RNA Ribossômico , RNA , Adenosina Trifosfatases , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell Rep ; 38(6): 110353, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139378

RESUMO

Eukaryotic ribosome biogenesis is facilitated and regulated by numerous ribosome biogenesis factors (RBFs). High-resolution cryoelectron microscopy (cryo-EM) maps have defined the molecular interactions of RBFs during maturation, but many transient and dynamic interactions, particularly during early assembly, remain uncharacterized. Using quantitative proteomics and crosslinking coupled to mass spectrometry (XL-MS) data from an extensive set of pre-ribosomal particles, we derive a comprehensive and time-resolved interaction map of RBF engagement during 60S maturation. We localize 22 previously unmapped RBFs to specific biogenesis intermediates and validate our results by mapping the catalytic activity of the methyltransferases Bmt2 and Rcm1 to their predicted nucleolar 60S intermediates. Our analysis reveals the interaction sites for the RBFs Noc2 and Ecm1 and elucidates the interaction map and timing of 60S engagement by the DEAD-box ATPases Dbp9 and Dbp10. Our data provide a powerful resource for future studies of 60S ribosome biogenesis.


Assuntos
Microscopia Crioeletrônica , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Nucléolo Celular/metabolismo , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Struct Mol Biol ; 22(3): 269-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25664723

RESUMO

Eukaryotic translation initiation requires cooperative assembly of a large protein complex at the 40S ribosomal subunit. We have resolved a budding yeast initiation complex by cryo-EM, allowing placement of prior structures of eIF1, eIF1A, eIF3a, eIF3b and eIF3c. Our structure highlights differences in initiation-complex binding to the ribosome compared to that of mammalian eIF3, demonstrates a direct contact between eIF3j and eIF1A and reveals the network of interactions between eIF3 subunits.


Assuntos
Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/química , Saccharomycetales/genética , Sítios de Ligação , Microscopia Crioeletrônica , Iniciação Traducional da Cadeia Peptídica , Estrutura Terciária de Proteína
7.
Cell ; 158(5): 1123-1135, 2014 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-25171412

RESUMO

Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA.


Assuntos
Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/química , Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Menores de Eucariotos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Hepacivirus/química , Humanos , Mamíferos/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Ribonucleoproteínas/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
8.
Nature ; 505(7484): 515-9, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24362565

RESUMO

Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.


Assuntos
Mitocôndrias/química , Subunidades Ribossômicas/química , Animais , Bovinos , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas/ultraestrutura , Suínos
10.
Mol Cell ; 52(6): 844-54, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24373746

RESUMO

Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB, complexed with nucleotide, reveals a newly discovered conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an autoregulatory hub that controls the ability of the helicase to transition between different functional states in response to both nucleotide and replication initiation/elongation factors.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Bacteriano/biossíntese , DnaB Helicases/metabolismo , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , DnaB Helicases/química , DnaB Helicases/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , RNA Bacteriano/biossíntese , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
11.
Proc Natl Acad Sci U S A ; 106(38): 16251-6, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805289

RESUMO

The DExD/H-box RNA-dependent ATPase Dbp5 plays an essential role in the nuclear export of mRNA. Dbp5 localizes to the nuclear pore complex, where its ATPase activity is stimulated by Gle1 and its coactivator inositol hexakisphosphate. Here, we present the crystal structure of the C-terminal domain of Dbp5, refined to 1.8 A. The structure reveals a RecA-like fold that contains two defining characteristics not present in other structurally characterized DExD/H-box proteins: a C-terminal alpha-helix and a loop connecting beta5 and alpha4, both of which are composed of conserved and unique elements in the Dbp5 primary sequence. Using structure-guided mutagenesis, we have identified several charged surface residues that, when mutated, weaken the binding of Gle1 and inhibit the ability of Gle1 to stimulate Dbp5's ATPase activity. In vivo analysis of the same mutations reveals that those mutants displaying the weakest ATPase stimulation in vitro are also unable to support yeast growth. Analysis of the correlation between the in vitro and in vivo data indicates that a threshold level of Dbp5 ATPase activity is required for cellular mRNA export that is not met by the unstimulated enzyme, suggesting a possible mechanism by which Dbp5's activity can be modulated to regulate mRNA export.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Catálise , Cristalização , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Hibridização In Situ , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
12.
Cell ; 135(4): 623-34, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19013274

RESUMO

The loading of oligomeric helicases onto replication origins marks an essential step in replisome assembly. In cells, dedicated AAA+ ATPases regulate loading, however, the mechanism by which these factors recruit and deposit helicases has remained unclear. To better understand this process, we determined the structure of the ATPase region of the bacterial helicase loader DnaC from Aquifex aeolicus to 2.7 A resolution. The structure shows that DnaC is a close paralog of the bacterial replication initiator, DnaA, and unexpectedly shares an ability to form a helical assembly similar to that of ATP-bound DnaA. Complementation and ssDNA-binding assays validate the importance of homomeric DnaC interactions, while pull-down experiments show that the DnaC and DnaA AAA+ domains interact in a nucleotide-dependent manner. These findings implicate DnaC as a molecular adaptor that uses ATP-activated DnaA as a docking site for regulating the recruitment and correct spatial deposition of the DnaB helicase onto origins.


Assuntos
Proteínas de Bactérias/química , DNA Helicases/fisiologia , Replicação do DNA , Proteínas de Ligação a DNA/química , DnaB Helicases/química , Proteínas de Escherichia coli/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Bactérias/enzimologia , Cristalografia por Raios X/métodos , DNA Helicases/metabolismo , DNA de Cadeia Simples/química , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
13.
Nat Rev Mol Cell Biol ; 9(6): 478-89, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18478031

RESUMO

Septins comprise a conserved family of proteins that are found primarily in fungi and animals. These GTP-binding proteins have several roles during cell division, cytoskeletal organization and membrane-remodelling events. One factor that is crucial for their functions is the ordered assembly of individual septins into oligomeric core complexes that, in turn, form higher-order structures such as filaments, rings and gauzes. The molecular details of these interactions and the mechanism by which septin-complex assembly is regulated have remained elusive. Recently, the first detailed structural views of the septin core have emerged, and these, along with studies of septin dynamics in vivo, have provided new insight into septin-complex assembly and septin function in vivo.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/fisiologia , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/fisiologia , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/fisiologia , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/fisiologia , Animais , Proteínas do Citoesqueleto/genética , GTP Fosfo-Hidrolases/genética , Humanos , Proteínas de Transporte Nucleocitoplasmático/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Termodinâmica
14.
Nat Struct Mol Biol ; 13(8): 684-90, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16829958

RESUMO

Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the Drosophila melanogaster origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes.


Assuntos
Proteínas de Drosophila/química , Nucleotídeos/metabolismo , Complexo de Reconhecimento de Origem/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Reconhecimento de Origem/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos
15.
Nat Struct Mol Biol ; 13(8): 676-83, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16829961

RESUMO

In bacteria, the initiation of replication is controlled by DnaA, a member of the ATPases associated with various cellular activities (AAA+) protein superfamily. ATP binding allows DnaA to transition from a monomeric state into a large oligomeric complex that remodels replication origins, triggers duplex melting and facilitates replisome assembly. The crystal structure of AMP-PCP-bound DnaA reveals a right-handed superhelix defined by specific protein-ATP interactions. The observed quaternary structure of DnaA, along with topology footprint assays, indicates that a right-handed DNA wrap is formed around the initiation nucleoprotein complex. This model clarifies how DnaA engages and unwinds bacterial origins and suggests that additional, regulatory AAA+ proteins engage DnaA at filament ends. Eukaryotic and archaeal initiators also have the structural elements that promote open-helix formation, indicating that a spiral, open-ring AAA+ assembly forms the core element of initiators in all domains of life.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Bactérias/enzimologia , Proteínas de Bactérias/genética , Sequência Conservada , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Conformação Proteica , Origem de Replicação
16.
Nat Cell Biol ; 8(7): 668-76, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16783364

RESUMO

The DExD/H-box ATPase Dbp5 is essential for nuclear mRNA export, although its precise role in this process remains poorly understood. Here, we identify the nuclear pore protein Gle1 as a cellular activator of Dbp5. Dbp5 alone is unable to stably bind RNA or effectively hydrolyse ATP under physiological conditions, but addition of Gle1 dramatically stimulates these activities. A gle1 point mutant deficient for Dbp5 stimulation in vitro displays an mRNA export defect in vivo, indicating that activation of Dbp5 is an essential function of Gle1. Interestingly, Gle1 binds directly to inositol hexakisphosphate (InsP6) and InsP6 potentiates the Gle1-mediated stimulation of Dbp5. Dominant mutations in DBP5 and GLE1 that rescue mRNA export phenotypes associated with the lack of InsP6 mimic the InsP6 effects in vitro. Our results define specific functions for Gle1 and InsP6 in mRNA export and suggest that local activation of Dbp5 at the nuclear pore is critical for mRNA export.


Assuntos
Proteínas de Transporte/metabolismo , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ácido Fítico/metabolismo , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Sítios de Ligação/fisiologia , Proteínas de Transporte/genética , RNA Helicases DEAD-box , Ativação Enzimática/fisiologia , Mutação/fisiologia , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Fenótipo , Estrutura Terciária de Proteína/fisiologia , RNA Helicases/genética , RNA Mensageiro/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-16689629

RESUMO

Complex cellular events commonly depend on the activity of molecular "machines" that efficiently couple enzymatic and regulatory functions within a multiprotein assembly. An essential and expanding subset of these assemblies comprises proteins of the ATPases associated with diverse cellular activities (AAA+) family. The defining feature of AAA+ proteins is a structurally conserved ATP-binding module that oligomerizes into active arrays. ATP binding and hydrolysis events at the interface of neighboring subunits drive conformational changes within the AAA+ assembly that direct translocation or remodeling of target substrates. In this review, we describe the critical features of the AAA+ domain, summarize our current knowledge of how this versatile element is incorporated into larger assemblies, and discuss specific adaptations of the AAA+ fold that allow complex molecular manipulations to be carried out for a highly diverse set of macromolecular targets.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , DNA/química , Evolução Molecular , Modelos Químicos , Modelos Moleculares , Proteínas Motores Moleculares/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , DNA/genética , DNA/metabolismo , Ativação Enzimática , Modelos Biológicos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Complexos Multiproteicos/química , Mutação , Ligação Proteica , Relação Estrutura-Atividade
18.
Dev Cell ; 8(1): 19-30, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15621527

RESUMO

In senescent cells, specialized domains of transcriptionally silent senescence-associated heterochromatic foci (SAHF), containing heterochromatin proteins such as HP1, are thought to repress expression of proliferation-promoting genes. We have investigated the composition and mode of assembly of SAHF and its contribution to cell cycle exit. SAHF is enriched in a transcription-silencing histone H2A variant, macroH2A. As cells approach senescence, a known chromatin regulator, HIRA, enters PML nuclear bodies, where it transiently colocalizes with HP1 proteins, prior to incorporation of HP1 proteins into SAHF. A physical complex containing HIRA and another chromatin regulator, ASF1a, is rate limiting for formation of SAHF and onset of senescence, and ASF1a is required for formation of SAHF and efficient senescence-associated cell cycle exit. These data indicate that HIRA and ASF1a drive formation of macroH2A-containing SAHF and senescence-associated cell cycle exit, via a pathway that appears to depend on flux of heterochromatic proteins through PML bodies.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclo Celular/fisiologia , Senescência Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Western Blotting/métodos , Contagem de Células/métodos , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Mecanismo Genético de Compensação de Dose , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica/métodos , Imunoprecipitação/métodos , Indóis , Chaperonas Moleculares , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transfecção/métodos , Proteínas Supressoras de Tumor , Proteínas ras/metabolismo
19.
Mol Cell ; 16(5): 749-60, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15574330

RESUMO

Nuclear export of mRNA in eukaryotic cells is mediated by soluble transport factors and components of the nuclear pore complex (NPC). The cytoplasmically oriented nuclear pore protein Nup159 plays a critical role in mRNA export through its conserved N-terminal domain (NTD). Here, we report the crystal structure of the Nup159 NTD, refined to 2.5 A. The structure reveals an unusually asymmetric seven-bladed beta-propeller that is structurally conserved throughout eukarya. Using structure-based conservation analysis, we have targeted specific surface residues for mutagenesis. Residue substitutions in a conserved loop of the NTD abolish in vitro binding to Dbp5, a DEAD box helicase required for mRNA export. In vivo, these mutations cause Dbp5 mislocalization and block mRNA export. These findings suggest that the Nup159 NTD functions in mRNA export as a binding platform, tethering shuttling Dbp5 molecules at the nuclear periphery and locally concentrating this mRNA remodeling factor at the cytoplasmic face of the NPC.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Adenosina Trifosfatases/química , Transporte Biológico , Núcleo Celular/metabolismo , Cromatografia em Gel , Cristalografia por Raios X , Citoplasma/metabolismo , RNA Helicases DEAD-box , Hibridização In Situ , Mutagênese Sítio-Dirigida , Mutação , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
20.
Curr Biol ; 13(24): 2148-58, 2003 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-14680630

RESUMO

BACKGROUND: Asf1 is a ubiquitous eukaryotic histone binding and deposition protein that mediates nucleosome formation in vitro and is required for genome stability in vivo. Studies in a variety of organisms have defined Asf1's role as a histone chaperone during DNA replication through specific interactions with histones H3/H4 and the histone deposition factor CAF-I. In addition to its role in replication, conserved interactions with proteins involved in chromatin silencing, transcription, chromatin remodeling, and DNA repair have also established Asf1 as an important component of a number of chromatin assembly and modulation complexes. RESULTS: We demonstrate that the highly conserved N-terminal domain of S. cerevisiae Asf1 (Asf1N) is the core region that mediates all tested functions of the full-length protein. The crystal structure of this core domain, determined to 1.5 A resolution, reveals a compact immunoglobulin-like beta sandwich fold topped by three helical linkers. The surface of Asf1 displays a conserved hydrophobic groove flanked on one side by an area of strong electronegative surface potential. These regions represent potential binding sites for histones and other interacting proteins. The structural model also allowed us to interpret mutagenesis studies of the human Asf1a/HIRA interaction and to functionally define the region of Asf1 responsible for Hir1-dependent telomeric silencing in budding yeast. CONCLUSIONS: The evolutionarily conserved, N-terminal 155 amino acids of histone deposition protein Asf1 are functional in vitro and in vivo. This core region of Asf1 adopts a compact immunoglobulin-fold structure with distinct surface characteristics, including a Hir protein binding region required for gene silencing.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inativação Gênica , Histonas/genética , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Proteínas de Ciclo Celular/isolamento & purificação , Cromatografia , Cristalografia , Eletroforese em Gel de Poliacrilamida , Técnicas de Transferência de Genes , Chaperonas Moleculares , Dados de Sequência Molecular , Testes de Precipitina , Conformação Proteica , Saccharomyces cerevisiae , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA