Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
FEBS J ; 281(24): 5552-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283965

RESUMO

The membrane-proximal C-terminal region (Pro-C) is important for the regulation of G-protein-coupled receptors (GPCRs), but the binding of the Pro-C region to a cytosolic regulator has not been structurally analyzed. The chemokine receptor CCR2 is a member of the GPCR superfamily, and the Pro-C region of CCR2 binds to the cytosolic regulator FROUNT. Studying the interaction between CCR2 Pro-C and FROUNT at an atomic level provides a basis for understanding the signal transduction mechanism via GPCRs. NOE-based NMR experiments showed that, when bound to FROUNT, CCR2 Pro-C adopted a helical conformation, as well as when embedded in dodecylphosphocholine micelles. A comparison of two types of cross-saturation-based NMR experiments, applied to a three-component mixture of Pro-C, FROUNT and micelles or a two-component mixture of Pro-C and micelles, revealed that the hydrophobic binding surface on Pro-C for FROUNT mostly overlapped with the binding site for micelles, suggesting competitive binding of Pro-C between FROUNT and micelles. Leu316 was important for both FROUNT and micelle binding. Phe319 was newly identified to be crucial for FROUNT binding, by NMR and mutational analyses. The association and dissociation rates of CCR2 Pro-C for lipid bilayer biomembranes were faster than those for FROUNT. We previously reported that FROUNT binding to CCR2 is detectable even in unstimulated cells and increases in response to chemokine stimulation. Taken together, these results support a model of CCR2 equilibrium: chemokine binding changes the conformational equilibrium of CCR2 toward the active state, and Pro-C switches its binding partner from the membrane to FROUNT.


Assuntos
Citosol/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Receptores CCR2/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Micelas , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Conformação Proteica , Receptores CCR2/química , Análise Espectral/métodos
2.
FEBS Lett ; 588(5): 678-84, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24462684

RESUMO

The mitochondrial targeting signal in the presequence of mitochondrial precursor proteins is recognized by Tom20 and subsequently by Tim50 in mitochondria. Yeast Tim50 contains two presequence binding sites in the conserved core domain and in the fungi-specific C-terminal presequence binding domain (PBD). We report the NMR analyses on interactions of a shorter variant of PBD (sPBD), a shorter variant of PBD, with presequences. The presequence is recognized by sPBD in a similar manner to Tom20. sPBD can also bind to the core domain of Tim50 through the presequence binding region, which could promote transfer of the presequence from sPBD to the core domain in Tim50.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae/genética
3.
Biochem J ; 457(2): 313-22, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128342

RESUMO

Chemokine receptors mediate the migration of leucocytes during inflammation. The cytoplasmic protein FROUNT binds to chemokine receptors CCR2 [chemokine (C-C motif) receptor 2] and CCR5, and amplifies chemotactic signals in leucocytes. Although the interaction between FROUNT and chemokine receptors is important for accurate chemotaxis, the interaction mechanism has not been elucidated. In the present study we identified a 16-amino-acid sequence responsible for high-affinity binding of FROUNT at the membrane-proximal C-terminal intracellular region of CCR2 (CCR2 Pro-C) by yeast two-hybrid analysis. Synthesized peptides corresponding to the CCR2 Pro-C sequence directly interacted with FROUNT in vitro. CCR2 Pro-C was predicted to form an amphipathic helix structure. Residues on the hydrophobic side are completely conserved among FROUNT-binding receptors, suggesting that the hydrophobic side is the responsible element for FROUNT binding. The L316T mutation to the hydrophobic side of the predicted helix decreased the affinity for FROUNT. Co-immunoprecipitation assays revealed that the CCR2 L316T mutation diminished the interaction between FROUNT and full-length CCR2 in cells. Furthermore, this mutation impaired the ability of the receptor to mediate chemotaxis. These findings provide the first description of the functional binding element in helix 8 of CCR2 for the cytosolic regulator FROUNT that mediates chemotactic signalling.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Sequência de Aminoácidos , Membrana Celular/genética , Sequência Conservada , Humanos , Células Jurkat , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica/fisiologia , Distribuição Aleatória , Receptores CCR2/genética , Receptores CCR5/genética
4.
J Biol Chem ; 288(22): 16064-72, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23576433

RESUMO

Exocrine gland-secreting peptide 1 (ESP1) is a sex pheromone that is released in male mouse tear fluids and enhances female sexual receptive behavior. ESP1 is selectively recognized by a specific class C G-protein-coupled receptor (GPCR), V2Rp5, among the hundreds of receptors expressed in vomeronasal sensory neurons (VSNs). The specific sensing mechanism of the mammalian peptide pheromone by the class C GPCR remains to be elucidated. Here we identified the minimal functional region needed to retain VSN-stimulating activity in ESP1 and determined its three-dimensional structure, which adopts a helical fold stabilized by an intramolecular disulfide bridge with extensive charged patches. We then identified the amino acids involved in the activation of VSNs by a structure-based mutational analysis, revealing that the highly charged surface is crucial for the ESP1 activity. We also demonstrated that ESP1 specifically bound to an extracellular region of V2Rp5 by an in vitro pulldown assay. Based on homology modeling of V2Rp5 using the structure of the metabotropic glutamate receptor, we constructed a docking model of the ESP1-V2Rp5 complex in which the binding interface exhibited good electrostatic complementarity. These experimental results, supported by the molecular docking simulations, reveal that charge-charge interactions determine the specificity of ESP1 binding to V2Rp5 in the large extracellular region characteristic of class C GPCRs. The present study provides insights into the structural basis for the narrowly tuned sensing of mammalian peptide pheromones by class C GPCRs.


Assuntos
Proteínas/química , Receptores de Feromônios/química , Atrativos Sexuais/química , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/metabolismo , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Atrativos Sexuais/genética , Atrativos Sexuais/metabolismo , Relação Estrutura-Atividade
5.
Protein Expr Purif ; 77(1): 86-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21193048

RESUMO

Chemokine receptors play pivotal roles for immune cell recruitment to inflammation sites, in response to chemokine gradients (chemotaxis). The mechanisms of chemokine signaling, especially the initiation of the intracellular signaling cascade, are not well understood. We previously identified a cytoplasmic protein FROUNT, which binds to the C-terminal regions of CCR2 and CCR5 to mediate chemokine signaling. Although large amounts of purified protein are required for detailed biochemical studies and drug screening, no method to produce recombinant FROUNT has been reported. In this study, we developed a method for the production of recombinant human FROUNT. Human FROUNT was successfully expressed in Escherichia coli, as a soluble protein fused to the folding chaperone Trigger Factor, with a cold shock expression system. The purified FROUNT protein displayed CCR2 binding ability without any additional components, as demonstrated by SPR measurements. A gel filtration analysis suggested that FROUNT exists in a homo-oligomeric state. This high-yield method is cost-effective for human FROUNT production. It should be a powerful tool for further biochemical and structural studies to elucidate GPCR regulation and chemokine signaling, and also will contribute to drug development.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/biossíntese , Complexo de Proteínas Formadoras de Poros Nucleares/isolamento & purificação , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Sequência de Aminoácidos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de Proteína
6.
Proc Natl Acad Sci U S A ; 106(16): 6644-9, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19346472

RESUMO

KcsA is a proton-activated, voltage-modulated K(+) channel that has served as the archetype pore domain in the Kv channel superfamily. Here, we have used synthetic antigen-binding fragments (Fabs) as crystallographic chaperones to determine the structure of full-length KcsA at 3.8 A, as well as that of its isolated C-terminal domain at 2.6 A. The structure of the full-length KcsA-Fab complex reveals a well-defined, 4-helix bundle that projects approximately 70 A toward the cytoplasm. This bundle promotes a approximately 15 degree bending in the inner bundle gate, tightening its diameter and shifting the narrowest point 2 turns of helix below. Functional analysis of the full-length KcsA-Fab complex suggests that the C-terminal bundle remains whole during gating. We suggest that this structure likely represents the physiologically relevant closed conformation of KcsA.


Assuntos
Proteínas de Bactérias/química , Canais de Potássio/química , Streptomyces lividans/química , Sequência de Aminoácidos , Cristalografia por Raios X , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
7.
J Mol Biol ; 381(2): 407-18, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18602117

RESUMO

Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed "monobodies." One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose-binding protein. The YSX monobody bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution X-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces.


Assuntos
Aminoácidos/química , Proteínas de Transporte/química , Fibronectinas/química , Aminoácidos/genética , Aminoácidos/metabolismo , Calorimetria , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Fibronectinas/genética , Fibronectinas/metabolismo , Cinética , Proteínas Ligantes de Maltose , Modelos Moleculares , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína , Serina/química , Serina/genética , Serina/metabolismo , Termodinâmica , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
8.
J Mol Biol ; 373(4): 924-40, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17825836

RESUMO

We have previously established a minimalist approach to antibody engineering by using a phage-displayed framework to support complementarity determining region (CDR) diversity restricted to a binary code of tyrosine and serine. Here, we systematically augmented the original binary library with additional levels of diversity and examined the effects. The diversity of the simplest library, in which only heavy chain CDR positions were randomized by the binary code, was expanded in a stepwise manner by adding diversity to the light chain, by diversifying non-paratope residues that may influence CDR conformations, and by adding additional chemical diversity to CDR-H3. The additional diversity incrementally improved the affinities of antibodies raised against human vascular endoethelial growth factor and the structure of an antibody-antigen complex showed that tyrosine side-chains are sufficient to mediate most of the interactions with antigen, but a glycine residue in CDR-H3 was critical for providing a conformation suitable for high-affinity binding. Using new high-throughput procedures and the most complex library, we produced multiple high-affinity antibodies with dissociation constants in the single-digit nanomolar range against a wide variety of protein antigens. Thus, this fully synthetic, minimalist library has essentially recapitulated the capacity of the natural immune system to generate high-affinity antibodies. Libraries of this type should be highly useful for proteomic applications, as they minimize inherent complexities of natural antibodies that have hindered the establishment of high-throughput procedures. Furthermore, analysis of a large number of antibodies derived from these well-defined and simplistic libraries allowed us to uncover statistically significant trends in CDR sequences, which provide valuable insights into antibody library design and into factors governing protein-protein interactions.


Assuntos
Anticorpos/química , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Regiões Determinantes de Complementaridade/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fator A de Crescimento do Endotélio Vascular/química
9.
Proc Natl Acad Sci U S A ; 104(16): 6632-7, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17420456

RESUMO

High degrees of sequence and conformation complexity found in natural protein interaction interfaces are generally considered essential for achieving tight and specific interactions. However, it has been demonstrated that specific antibodies can be built by using an interface with a binary code consisting of only Tyr and Ser. This surprising result might be attributed to yet undefined properties of the antibody scaffold that uniquely enhance its capacity for target binding. In this work we tested the generality of the binary-code interface by engineering binding proteins based on a single-domain scaffold. We show that Tyr/Ser binary-code interfaces consisting of only 15-20 positions within a fibronectin type III domain (FN3; 95 residues) are capable of producing specific binding proteins (termed "monobodies") with a low-nanomolar K(d). A 2.35-A x-ray crystal structure of a monobody in complex with its target, maltose-binding protein, and mutation analysis revealed dominant contributions of Tyr residues to binding as well as striking molecular mimicry of a maltose-binding protein substrate, beta-cyclodextrin, by the Tyr/Ser binary interface. This work suggests that an interaction interface with low chemical diversity but with significant conformational diversity is generally sufficient for tight and specific molecular recognition, providing fundamental insights into factors governing protein-protein interactions.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Engenharia de Proteínas , Técnicas de Química Combinatória , Cristalografia por Raios X , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Biblioteca de Peptídeos , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Genes Cells ; 12(3): 285-97, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17352735

RESUMO

The splicing of nuclear encoded RNAs, including tRNAs, has been widely believed to occur in the nucleus. However, we recently found that one of the tRNA splicing enzymes, splicing endonuclease, is localized to the outer surface of mitochondria in Saccharomyces cerevisiae. These results suggested the unexpected possibility of tRNA splicing in the cytoplasm. To investigate this possibility, we examined whether cytoplasmic pre-tRNAs are bona fide intermediates for tRNA maturation in vivo. We isolated a new reversible allele of temperature-sensitive (ts) sen2 (HA-sen2-42), which encodes a mutant form of one of the catalytic subunits of yeast splicing endonuclease. The HA-sen2-42 cells accumulated large amounts of pre-tRNAs in the cytoplasm at a restrictive temperature, but the pre-tRNAs were diminished when the cells were transferred to a permissive temperature. Using pulse-chase/hybrid-precipitation techniques, we showed that the pre-tRNAs were not degraded but rather converted into mature tRNAs during incubation at the permissive temperature. These and other results indicate that, in S. cerevisiae, pre-tRNAs in the cytoplasm are genuine substrates for splicing, and that the splicing is indeed carried out in the cytoplasm.


Assuntos
Splicing de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Citoplasma/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Genes Fúngicos , Dados de Sequência Molecular , Mutação , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
11.
Mol Biol Cell ; 14(8): 3266-79, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12925762

RESUMO

Pre-tRNA splicing has been believed to occur in the nucleus. In yeast, the tRNA splicing endonuclease that cleaves the exon-intron junctions of pre-tRNAs consists of Sen54p, Sen2p, Sen34p, and Sen15p and was thought to be an integral membrane protein of the inner nuclear envelope. Here we show that the majority of Sen2p, Sen54p, and the endonuclease activity are not localized in the nucleus, but on the mitochondrial surface. The endonuclease is peripherally associated with the cytosolic surface of the outer mitochondrial membrane. A Sen54p derivative artificially fixed on the mitochondria as an integral membrane protein can functionally replace the authentic Sen54p, whereas mutant proteins defective in mitochondrial localization are not fully active. sen2 mutant cells accumulate unspliced pre-tRNAs in the cytosol under the restrictive conditions, and this export of the pre-tRNAs partly depends on Los1p, yeast exportin-t. It is difficult to explain these results from the view of tRNA splicing in the nucleus. We rather propose a new possibility that tRNA splicing occurs on the mitochondrial surface in yeast.


Assuntos
Endorribonucleases/metabolismo , Mitocôndrias/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Clonagem Molecular , Hibridização in Situ Fluorescente , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA