Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biol Open ; 12(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504260

RESUMO

In recent decades, study of the actions of bioactive lipids such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) has increased since they are involved in regulating many processes, including self-renewal of embryonic stem cells, embryo development and cancer. Phospholipid phosphatase type 3 (PLPP3) has been shown to be a key player in regulating the balance of these lipids and, in consequence, their signaling. Different lines of evidence suggest that PLPP3 could play a role in endoderm development. To approach this hypothesis, we used mouse embryonic stem cells (ESC) as a model to study Plpp3 function in self-renewal and the transition towards differentiation. We found that lack of PLPP3 mainly affects endoderm formation during differentiation of suspension-formed embryoid bodies. PLPP3-deficient ESC strongly decrease the amount of FOXA2-expressing cells and fail to properly downregulate the expression of pluripotency factors when subjected to an endoderm-directed differentiation protocol. Impaired endoderm differentiation correlated with a transient reduction in nuclear localization of YAP1. These phenotypes were rescued by transiently restoring the expression of catalytically active hPLPP3. In conclusion, PLPP3 plays a role in downregulating pluripotency-associated factors and in endodermal differentiation. PLPP3 regulates proper lipid/YAP1 signaling required for endodermal differentiation.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Lipídeos
2.
Dev Dyn ; 251(1): 213-225, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228380

RESUMO

BACKGROUND: The Transforming Growth Factor ß (TGFß) family is a group of related proteins that signal through a type I and type II receptors. Betaglycan, also known as the type III receptor (Tgfbr3), is a coreceptor for various ligands of the TGFß family that participates in heart, liver and kidney development as revealed by the tgfbr3-null mouse, as well as in angiogenesis as revealed by Tgfbr3 downregulation in morphant zebrafish. RESULTS: Here, we present CRISPR/Cas9-derived zebrafish Tgfbr3-null mutants, which exhibited unaltered embryonic angiogenesis and developed into fertile adults. One reproducible phenotype displayed by these Tgfbr3-null mutants is delayed chordacentra mineralization, which nonetheless does not result in vertebral abnormalities in the adult fishes. We also report that the canonical TGFß signaling pathway is needed for proper chordacentra mineralization and that Tgfbr3 absence decreases this signal in the notochordal cells responsible for this process. CONCLUSION: Betaglycan's "ligand presentation" function contributes to the optimal TGFß signaling required for zebrafish chordacentra mineralization.


Assuntos
Receptores de Fatores de Crescimento Transformadores beta , Peixe-Zebra , Animais , Camundongos , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Int J Dev Biol ; 65(1-2-3): 163-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930362

RESUMO

Maria-Elena Torres-Padilla's research is focused on how cell fate arises from a single-cell embryo, the fertilized egg or zygote. After the initial divisions, cell potency becomes restricted, originating the first cell lineage fates. She studies how epigenetic information controls transitions in cell identity and cellular reprogramming during embryonic development. Currently, she is the founding Director of the Institute of Epigenetics and Stem Cells, Helmholtz Centre, and Professor of Stem Cell Biology at the Ludwigs Maximilians University in Munich. In this interview, Maria-Elena Torres-Padilla talks to us about her beginnings in the biology field in Mexico. She also tells us about how she became interested in the control of genome regulation within the nucleus during the transition from totipotency to pluripotency and how the control of gene regulation and chromatin organization during the early stages of cell fate decision in the one-cell embryo occurs. She considers that science has no borders; visiting Mexico gives her the possibility to discuss her work with colleagues and the new generation of students trained in Mexico.


Assuntos
Reprogramação Celular , Epigênese Genética , Genoma , Desenvolvimento Embrionário , Alemanha , Humanos , México , Zigoto
4.
Int J Dev Biol ; 65(1-2-3): 143-152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930366

RESUMO

Cell fusion is a process in which cells unite their membranes and cytoplasm. It is fundamental for sexual reproduction and embryonic development. Among the best-known cell fusion processes during animal development are fertilization, myoblast fusion, osteoclast generation, and vulva formation in Caenorhabditis elegans. Although it is involved in many other functions in unicellular and multicellular organisms, little is known about the mechanisms of cell fusion and the genes that code for the proteins participating in this process. Benjamin Podbilewicz has dedicated many years to understanding the processes and mechanisms of cell fusion. In this interview, he spoke to us about how he began his studies of this process, his contributions to this exciting field, his scientific ties with Ibero-America and his strategies for a well-balanced scientific/personal life.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Comunicação Celular , Fusão Celular , Citoplasma , Feminino
5.
Int J Dev Biol ; 65(1-2-3): 153-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33200811

RESUMO

Neurogenesis is the process by which new neurons are formed from progenitor cells. The adult nervous system was long considered unable to generate new neurons, especially in mammals. It was not until the 1960s that Joseph Altman and Gopal Das, using H3-thymidine autoradiography to trace newly formed cells, that the first suggestions of new neurons added to the olfactory bulb and the dentate gyrus of the rat hippocampus came about. These observations remained controversial for many years as they went against the dogmatic view that the structure of the adult brain precluded processes of neurogenesis. It was not until two decades later that work in songbirds and then in mammals, not only confirmed that new neurons could be produced in the adult brain, but revealed basic processes of how young neurons are produced, how they could migrate long distances and become incorporated into adult brain circuits. Arturo Álvarez-Buylla has made important contributions to the understanding of the mechanism of adult neurogenesis, including the identification of adult neural stem cells. Here we summarize a discussion with him related to the field of adult neurogenesis, the root of his interest in neural development and the ramifications of some of his laboratory findings.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Neurogênese , Animais , Hipocampo/citologia , Masculino , Mamíferos , Neurônios , Ratos
6.
Arterioscler Thromb Vasc Biol ; 39(11): 2261-2272, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31533471

RESUMO

OBJECTIVE: Genome-wide association studies identified novel loci in PLPP3(phospholipid phosphatase 3) that associate with coronary artery disease risk independently of traditional risk factors. PLPP3 encodes LPP3 (lipid phosphate phosphatase 3), a cell-surface enzyme that can regulate the availability of bioactive lysophopsholipids including lysophosphatidic acid (LPA). The protective allele of PLPP3 increases LPP3 expression during cell exposure to oxidized lipids, however, the role of LPP3 in atherosclerosis remains unclear. Approach and Results: In this study, we sought to validate LPP3 as a determinate of the development of atherosclerosis. In experimental models of atherosclerosis, LPP3 is upregulated and co-localizes with endothelial, smooth muscle cell, and CD68-positive cell markers. Global post-natal reductions in Plpp3 expression in mice substantially increase atherosclerosis, plaque-associated LPA, and inflammation. Although LPP3 expression increases during ox-LDL (oxidized low-density lipoprotein)-induced phenotypic modulation of bone marrow-derived macrophages, myeloid Plpp3 does not appear to regulate lesion formation. Rather, smooth muscle cell LPP3 expression is a critical regulator of atherosclerosis and LPA content in lesions. Moreover, mice with inherited deficiency in LPA receptor signaling are protected from experimental atherosclerosis. CONCLUSIONS: Our results identify a novel lipid signaling pathway that regulates inflammation in the context of atherosclerosis and is not related to traditional risk factors. Pharmacological targeting of bioactive LPP3 substrates, including LPA, may offer an orthogonal approach to lipid-lowering drugs for mitigation of coronary artery disease risk.


Assuntos
Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/genética , Fosfatidato Fosfatase/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fosfatidato Fosfatase/metabolismo , Transdução de Sinais
7.
PLoS One ; 13(6): e0198063, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889835

RESUMO

Dephosphorylation of phosphatidic acid (PA) is the penultimate step in triglyceride synthesis. Adipocytes express soluble intracellular PA-specific phosphatases (Lipins) and broader specificity membrane-associated lipid phosphate phosphatases (LPPs) that can also dephosphorylate PA. Inactivation of lipin1 causes lipodystrophy in mice due to defective developmental adipogenesis. Triglyceride synthesis is diminished but not ablated by inactivation of lipin1 in differentiated adipocytes implicating other PA phosphatases in this process. To investigate the possible role of LPPs in adipocyte lipid metabolism and signaling we made mice with adipocyte-targeted inactivation of LPP3 encoded by the Plpp3(Ppap2b) gene. Adipocyte LPP3 deficiency resulted in blunted ceramide and sphingomyelin accumulation during diet-induced adipose tissue expansion, accumulation of the LPP3 substrate sphingosine 1- phosphate, and reduced expression of serine palmitoyl transferase. However, adiposity was unaffected by LPP3 deficiency on standard, high fat diet or Western diets, although Western diet-fed mice with adipocyte LPP3 deficiency exhibited improved glucose tolerance. Our results demonstrate functional compartmentalization of lipid phosphatase activity in adipocytes and identify an unexpected role for LPP3 in the regulation of diet-dependent sphingolipid synthesis that may impact on insulin signaling.


Assuntos
Adipócitos/metabolismo , Adipogenia , Dieta/efeitos adversos , Obesidade/enzimologia , Obesidade/patologia , Fosfatidato Fosfatase/metabolismo , Esfingolipídeos/biossíntese , Adipócitos/citologia , Adipócitos/patologia , Animais , Camundongos , Obesidade/metabolismo , Fosfatidato Fosfatase/deficiência
8.
Atherosclerosis ; 271: 156-165, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29518748

RESUMO

LPP3 is an integral membrane protein belonging to a family of enzymes (LPPs) that display broad substrate specificity and catalyse dephosphorylation of several lipid substrates, including lysophosphatidic acid and sphingosine-1-phosphate. In mammals, the LPP family consists of three enzymes named LPP1, LPP2 and LPP3, which are encoded by three independent genes, PLPP1, PLPP2 and PLPP3, respectively (formerly known as PPAP2A, PPAP2C, PPAP2B). These three enzymes, in vitro, do not seem to differ for catalytic activities and substrate preferences. However, in vivo targeted inactivation of the individual genes has indicated that the enzymes do not have overlapping functions and that LPP3, specifically, plays a crucial role in vascular development. In 2011, two genome-wide association studies have identified PLPP3 as a novel locus associated with coronary artery disease susceptibility. Shortly after these reports, tissue specific inactivation of PLPP3 in mice highlighted a specific role for LPP3 in vascular pathophysiology and, more recently, in atherosclerosis development. This review is aimed at providing an updated overview on the function of LPP3 in embryonic cardiovascular development and on the experimental and clinical evidences relating this enzyme to vascular cell functions and cardiovascular disease.


Assuntos
Doença da Artéria Coronariana/enzimologia , Vasos Coronários/enzimologia , Fosfatidato Fosfatase/metabolismo , Animais , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Humanos , Fosfatidato Fosfatase/química , Fosfatidato Fosfatase/genética , Polimorfismo Genético , Conformação Proteica , Fatores de Risco , Transdução de Sinais , Relação Estrutura-Atividade
9.
Redox Biol ; 14: 261-271, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28982073

RESUMO

Lipid Phosphate phosphatase 3 (LPP3), encoded by the Plpp3 gene, is an enzyme that dephosphorylates the bioactive lipid mediator lysophosphatidic acid (LPA). To study the role of LPP3 in the myocardium, we generated a cardiac specific Plpp3 deficient mouse strain. Although these mice were viable at birth in contrast to global Plpp3 knockout mice, they showed increased mortality ~ 8 months. LPP3 deficient mice had enlarged hearts with reduced left ventricular performance as seen by echocardiography. Cardiac specific Plpp3 deficient mice had longer ventricular effective refractory periods compared to their Plpp3 littermates. We observed that lack of Lpp3 enhanced cardiomyocyte hypertrophy based on analysis of cell surface area. We found that lack of Lpp3 signaling was mediated through the activation of Rho and phospho-ERK pathways. There are increased levels of fetal genes Natriuretic Peptide A and B (Nppa and Nppb) expression indicating myocardial dysfunction. These mice also demonstrate mitochondrial dysfunction as evidenced by a significant decrease (P < 0.001) in the basal oxygen consumption rate, mitochondrial ATP production, and spare respiratory capacity as measured through mitochondrial bioenergetics. Histology and transmission electron microscopy of these hearts showed disrupted sarcomere organization and intercalated disc, with a prominent disruption of the cristae and vacuole formation in the mitochondria. Our findings suggest that LPA/LPP3-signaling nexus plays an important role in normal function of cardiomyocytes.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Fosfatidato Fosfatase/metabolismo , Animais , Metabolismo Energético , Deleção de Genes , Insuficiência Cardíaca/genética , Lisofosfolipídeos/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Consumo de Oxigênio , Fosfatidato Fosfatase/genética , Transdução de Sinais
10.
Sci Rep ; 7: 44503, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28291223

RESUMO

The PLPP3 gene encodes for a ubiquitous enzyme that dephosphorylates several lipid substrates. Genome-wide association studies identified PLPP3 as a gene that plays a role in coronary artery disease susceptibility. The aim of the study was to investigate the effect of Plpp3 deletion on atherosclerosis development in mice. Because the constitutive deletion of Plpp3 in mice is lethal, conditional Plpp3 hepatocyte-specific null mice were generated by crossing floxed Plpp3 mice with animals expressing Cre recombinase under control of the albumin promoter. The mice were crossed onto the athero-prone apoE-/- background to obtain Plpp3f/fapoE-/-Alb-Cre+ and Plpp3f/fapoE-/-Alb-Cre- offspring, the latter of which were used as controls. The mice were fed chow or a Western diet for 32 or 12 weeks, respectively. On the Western diet, Alb-Cre+ mice developed more atherosclerosis than Alb-Cre- mice, both at the aortic sinus and aorta. Lipidomic analysis showed that hepatic Plpp3 deletion significantly modified the levels of several plasma lipids involved in atherosclerosis, including lactosylceramides, lysophosphatidic acids, and lysophosphatidylinositols. In conclusion, Plpp3 ablation in mice worsened atherosclerosis development. Lipidomic analysis suggested that the hepatic Plpp3 deletion may promote atherosclerosis by increasing plasma levels of several low-abundant pro-atherogenic lipids, thus providing a molecular basis for the observed results.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Fígado/metabolismo , Fosfatidato Fosfatase/genética , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/sangue , Aterosclerose/patologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Deleção de Genes , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética
11.
Sci Rep ; 6: 24028, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063549

RESUMO

Parkinson's disease (PD) is a multifactorial neurodegenerative disorder, characterised by the progressive loss of midbrain dopaminergic neurons and a variety of motor symptoms. The gene coding for the phospholipid phosphatase 3, PLPP3 (formerly PPAP2B or LPP3), maps within the PARK10 locus, a region that has been linked with increased risk to late-onset PD. PLPP3 modulates the levels of a range of bioactive lipids controlling fundamental cellular processes within the central nervous system. Here we show that PLPP3 is enriched in astroglial cells of the adult murine ventral midbrain. Conditional inactivation of Plpp3 using a Nestin::Cre driver results in reduced mesencephalic levels of sphingosine-1-phosphate receptor 1 (S1P1), a well-known mediator of pro-survival responses. Yet, adult PLPP3-deficient mice exhibited no alterations in the number of dopaminergic neurons or in the basal levels of striatal extracellular dopamine (DA). Potassium-evoked DA overflow in the striatum, however, was significantly decreased in mutant mice. Locomotor evaluation revealed that, although PLPP3-deficient mice exhibit motor impairment, this is not progressive or responsive to acute L-DOPA therapy. These findings suggest that disruption of Plpp3 during early neural development leads to dopaminergic transmission deficits in the absence of nigrostriatal degeneration, and without causing an age-related locomotor decline consistent with PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Loci Gênicos , Locomoção/fisiologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas de Transferência de Fosfolipídeos/deficiência , Proteínas de Transferência de Fosfolipídeos/genética , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais
12.
Nat Immunol ; 16(12): 1245-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26502404

RESUMO

Despite the importance of signaling lipids, many questions remain about their function because few tools are available for charting lipid gradients in vivo. Here we generated a sphingosine 1-phosphate (S1P) reporter mouse and used this mouse to define the distribution of S1P in the spleen. Unexpectedly, the presence of blood did not serve as a predictor of the concentration of signaling-available S1P. Large areas of the red pulp had low concentrations of S1P, while S1P was sensed by cells inside the white pulp near the marginal sinus. The lipid phosphate phosphatase LPP3 maintained low S1P concentrations in the spleen and enabled efficient shuttling of marginal zone B cells. The exquisitely tight regulation of S1P availability might explain how a single lipid can simultaneously orchestrate the movements of many cells of the immune system.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Baço/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Linfócitos B/metabolismo , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Baço/citologia , Proteína Vermelha Fluorescente
13.
J Biol Chem ; 289(35): 24079-90, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25035428

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal protein that responds to various stimuli, including capsaicin (the pungent compound found in chili peppers), extracellular acid, and basic intracellular pH, temperatures close to 42 °C, and several lipids. Lysophosphatidic acid (LPA), an endogenous lipid widely associated with neuropathic pain, is an agonist of the TRPV1 channel found in primary afferent nociceptors and is activated by other noxious stimuli. Agonists or antagonists of lipid and other chemical natures are known to possess specific structural requirements for producing functional effects on their targets. To better understand how LPA and other lipid analogs might interact and affect the function of TRPV1, we set out to determine the structural features of these lipids that result in the activation of TRPV1. By changing the acyl chain length, saturation, and headgroup of these LPA analogs, we established strict requirements for activation of TRPV1. Among the natural LPA analogs, we found that only LPA 18:1, alkylglycerophosphate 18:1, and cyclic phosphatidic acid 18:1, all with a monounsaturated C18 hydrocarbon chain activate TRPV1, whereas polyunsaturated and saturated analogs do not. Thus, TRPV1 shows a more restricted ligand specificity compared with LPA G-protein-coupled receptors. We synthesized fatty alcohol phosphates and thiophosphates and found that many of them with a single double bond in position Δ9, 10, or 11 and Δ9 cyclopropyl group can activate TRPV1 with efficacy similar to capsaicin. Finally, we developed a pharmacophore and proposed a mechanistic model for how these lipids could induce a conformational change that activates TRPV1.


Assuntos
Lisofosfolipídeos/metabolismo , Canais de Cátion TRPV/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Canais de Cátion TRPV/química
14.
Arterioscler Thromb Vasc Biol ; 34(4): 837-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24504738

RESUMO

OBJECTIVE: Lipid phosphate phosphatase 3 (LPP3), encoded by the PPAP2B gene, is an integral membrane enzyme that dephosphorylates, and thereby terminates, the G-protein-coupled receptor-mediated signaling actions of lysophosphatidic acid (LPA) and sphingosine-1-phosphate. LPP3 is essential for normal vascular development in mice, and a common PPAP2B polymorphism is associated with increased risk of coronary artery disease in humans. Herein, we investigate the function of endothelial LPP3 to understand its role in the development and human disease. APPROACH AND RESULTS: We developed mouse models with selective LPP3 deficiency in endothelial and hematopoietic cells. Tyrosine kinase Tek promoter-mediated inactivation of Ppap2b resulted in embryonic lethality because of vascular defects. LPP3 deficiency in adult mice, achieved using a tamoxifen-inducible Cre transgene under the control of the Tyrosine kinase Tek promoter, enhanced local and systemic inflammatory responses. Endothelial, but not hematopoietic, cell LPP3 deficiency led to significant increases in vascular permeability at baseline and enhanced sensitivity to inflammation-induced vascular leak. Endothelial barrier function was restored by pharmacological or genetic inhibition of either LPA production by the circulating lysophospholipase D autotaxin or of G-protein-coupled receptor-dependent LPA signaling. CONCLUSIONS: Our results identify a role for the autotaxin/LPA-signaling nexus as a mediator of endothelial permeability in inflammation and demonstrate that LPP3 limits these effects. These findings have implications for therapeutic targets to maintain vascular barrier function in inflammatory states.


Assuntos
Permeabilidade Capilar , Células Endoteliais/enzimologia , Células-Tronco Hematopoéticas/enzimologia , Inflamação/enzimologia , Fosfatidato Fosfatase/deficiência , Animais , Permeabilidade Capilar/efeitos dos fármacos , Citocinas/sangue , Células Endoteliais/efeitos dos fármacos , Genótipo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Inflamação/sangue , Inflamação/genética , Mediadores da Inflamação/sangue , Integrases/genética , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosfatidato Fosfatase/genética , Diester Fosfórico Hidrolases/metabolismo , Regiões Promotoras Genéticas , Receptor TIE-2/genética , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Transgenes
15.
Arterioscler Thromb Vasc Biol ; 33(1): 52-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104851

RESUMO

OBJECTIVE: The lipid phosphate phosphatase 3 (LPP3) degrades bioactive lysophospholipids, including lysophosphatidic acid and sphingosine-1-phosphate, and thereby terminates their signaling effects. Although emerging evidence links lysophosphatidic acid to atherosclerosis and vascular injury responses, little is known about the role of vascular LPP3. The goal of this study was to determine the role of LPP3 in the development of vascular neointima formation and smooth muscle cells (SMC) responses. METHODS AND RESULTS: We report that LPP3 is expressed in vascular SMC after experimental arterial injury. Using gain- and loss-of-function approaches, we establish that a major function of LPP3 in isolated SMC cells is to attenuate proliferation (extracellular signal-regulated kinases) activity, Rho activation, and migration in response to serum and lysophosphatidic acid. These effects are at least partially a consequence of LPP3-catalyzed lysophosphatidic acid hydrolysis. Mice with selective inactivation of LPP3 in SMC display an exaggerated neointimal response to injury. CONCLUSIONS: Our observations suggest that LPP3 serves as an intrinsic negative regulator of SMC phenotypic modulation and inflammation after vascular injury, in part, by regulating lysophospholipid signaling. These findings may provide a mechanistic link to explain the association between a PPAP2B polymorphism and coronary artery disease risk.


Assuntos
Lesões das Artérias Carótidas/prevenção & controle , Proliferação de Células , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fosfatidato Fosfatase/metabolismo , Animais , Lesões das Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/enzimologia , Artéria Carótida Primitiva/patologia , Movimento Celular , Modelos Animais de Doenças , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Genótipo , Células HEK293 , Humanos , Hidrólise , Hiperplasia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Fosfatidato Fosfatase/deficiência , Fosfatidato Fosfatase/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Quinases Associadas a rho/metabolismo
16.
Dev Dyn ; 241(5): 953-64, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22434721

RESUMO

BACKGROUND: Bioactive lipids such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been recently described as important regulators of pluripotency and differentiation of embryonic stem (ES) cells and neural progenitors. Due to the early lethality of LPP3, an enzyme that regulates the levels and biological activities of the aforementioned lipids, it has been difficult to assess its participation in early neural differentiation and neuritogenesis. RESULTS: We find that Ppap2b(-/-) (Lpp3(-/-) ) ES cells differentiated in vitro into spinal neurons show a considerable reduction in the amount of neural precursors and young neurons formed. In addition, differentiated Lpp3(-/-) neurons exhibit impaired neurite outgrowth. Surprisingly, when Lpp3(-/-) ES cells were differentiated, an unexpected appearance of smooth muscle actin-positive cells was observed, an event that was partially dependent upon phosphorylated sphingosines. CONCLUSIONS: Our data show that LPP3 plays a fundamental role during spinal neuron differentiation from ES and that it also participates in regulating neurite and axon outgrowth.


Assuntos
Axônios/enzimologia , Neuritos/enzimologia , Neurogênese/fisiologia , Neurônios/enzimologia , Fosfatidato Fosfatase/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Camundongos , Neurônios/citologia , Fosfatidato Fosfatase/genética
17.
Nat Chem Biol ; 8(1): 78-85, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101604

RESUMO

Since 1992, there has been growing evidence that the bioactive phospholipid lysophosphatidic acid (LPA), whose amounts are increased upon tissue injury, activates primary nociceptors resulting in neuropathic pain. The TRPV1 ion channel is expressed in primary afferent nociceptors and is activated by physical and chemical stimuli. Here we show that in control mice LPA produces acute pain-like behaviors, which are substantially reduced in Trpv1-null animals. Our data also demonstrate that LPA activates TRPV1 through a unique mechanism that is independent of G protein-coupled receptors, contrary to what has been widely shown for other ion channels, by directly interacting with the C terminus of the channel. We conclude that TRPV1 is a direct molecular target of the pain-producing molecule LPA and that this constitutes, to our knowledge, the first example of LPA binding directly to an ion channel to acutely regulate its function.


Assuntos
Lisofosfolipídeos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Sítios de Ligação , Camundongos , Camundongos Endogâmicos C57BL , Dor/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Canais de Cátion TRPV/deficiência
18.
Cell Tissue Res ; 345(1): 137-48, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21647563

RESUMO

The mammalian SWI/SNF chromatin remodeling complexes play essential roles in cell cycle control through the transcriptional regulation of cell-cycle-specific genes. These complexes depend on the energy of ATP hydrolysis provided by the BRG1 or BRM catalytic subunit. They contain seven or more noncatalytic subunits, some being constitutive components, with others having paralogs that assemble in a combinatory manner producing different SWI/SNF-related complexes with specific functions. ARID1A and ARID1B are mutually exclusive subunits of the BAF complex. The specific presence of these subunits in the complex has been demonstrated to determine whether SWI/SNF functions as a corepressor (ARID1A) or as a coactivator (ARID1B) of the cell cycle genes. Our aim has been to analyze the relevance of the ARID1 subunits in development. We have compared the patterns of expression of these two genes through various mouse embryonic stages. Arid1a is expressed widely and intensively, whereas Arid1b is poorly transcribed and expressed in selected regions. Moreover, ARID1A and ARID1B present different kinetics of expression in the cell cycle. ARID1A accumulates in G0 and is downregulated throughout the cell cycle phases but is completely eliminated during mitosis, whereas ARID1B is expressed at comparable levels at all phases, even during mitosis. These kinetics probably affect the incorporation patterns of the ARID1 proteins to the complex and hence modulate SWI/SNF activity during proliferation and arrest.


Assuntos
Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Ciclo Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Immunoblotting , Interfase , Camundongos , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/genética , Fatores de Transcrição/genética , Ubiquitina/metabolismo
19.
J Exp Med ; 208(6): 1267-78, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21576386

RESUMO

The signaling lipid sphingosine-1-phosphate (S1P) stabilizes the vasculature, directs lymphocyte egress from lymphoid organs, and shapes inflammatory responses. However, little is known about how S1P distribution is controlled in vivo, and it is not clear how a ubiquitously made lipid functions as a signal that requires precise spatial and temporal control. We have found that lipid phosphate phosphatase 3 (LPP3) enables efficient export of mature T cells from the thymus into circulation, and several lines of evidence suggest that LPP3 promotes exit by destroying thymic S1P. Although five additional S1P-degrading enzymes are expressed in the thymus, they cannot compensate for the loss of LPP3. Moreover, conditional deletion of LPP3 in either epithelial cells or endothelial cells is sufficient to inhibit egress. These results suggest that S1P generation and destruction are tightly regulated and that LPP3 is essential to establish the balance.


Assuntos
Lisofosfolipídeos/metabolismo , Fosfatidato Fosfatase/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Timo/enzimologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Células Endoteliais/citologia , Células Epiteliais/citologia , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Lectinas Tipo C/metabolismo , Espectrometria de Massas/métodos , Camundongos , Camundongos Transgênicos , Microscopia Confocal/métodos , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Linfócitos T/metabolismo
20.
Glia ; 59(4): 577-89, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21319224

RESUMO

Bioactive lipids serve as intracellular and extracellular mediators in cell signaling in normal and pathological conditions. Here we describe that an important regulator of some of these lipids, the lipid phosphate phosphatase-3 (LPP3), is abundantly expressed in specific plasma membrane domains of Bergmann glia (BG), a specialized type of astrocyte with key roles in cerebellum development and physiology. Mice selectively lacking expression of LPP3/Ppap2b in the nervous system are viable and fertile but exhibit defects in postnatal cerebellum development and modifications in the cytoarchitecture and arrangement of BG with a mild non-progressive motor coordination defect. Lipid and gene profiling studies in combination with pharmacological treatments suggest that most of these effects are associated with alterations in sphingosine-1-phosphate (S1P) metabolism and signaling. Altogether our data indicate that LPP3 participates in several aspects of neuron-glia communication required for proper cerebellum development.


Assuntos
Astrócitos/metabolismo , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Lisofosfolipídeos/metabolismo , Fosfatidato Fosfatase/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Animais , Contagem de Células , Cerebelo/citologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Destreza Motora/fisiologia , Técnicas de Cultura de Órgãos , Fosfatidato Fosfatase/genética , Teste de Desempenho do Rota-Rod , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA