Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 23(2): 363-374, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33190297

RESUMO

Waterlogging and salinity impair crop growth and productivity worldwide, with their combined effects being larger than the additive effects of the two stresses separately. Here, a common forage tetraploid Lotus corniculatus (cv. San Gabriel) and a diploid L. corniculatus accession, collected from a coastal area with high frequency of waterlogging-saline stress events, were evaluated for tolerance to waterlogging, salinity and these two stresses combined. We hypothesize that, due to its environmental niche, the diploid accession would show better adaptation to combined waterlogging-saline stress compared to the tetraploid L. corniculatus. Plants were evaluated under control conditions, waterlogging, salinity and a combined waterlogging-saline treatment for 33 days. Shoot and root growth were assessed, together with chlorophyll fluorescence and gas exchange measurements. Results showed that salinity and waterlogging effects were more severe for the tetraploid accession, with a larger effect being observed under the combined stress condition. Concentrations of Na+ , Cl- and K+ were measured in apical and basal leaves, and in roots. A larger accumulation of Na+ and Cl- was observed under both saline and combined stress treatments for the tetraploid L. corniculatus, for which ion toxicity effects were evident. The expression of CLC gene, coding for a Cl- transporter, was only increased in diploid L. corniculatus plants in response to the combined stress condition, suggesting that ion compartmentalization mechanisms were induced in this accession. Thus, this recently characterized L. corniculatus could be used for the introduction of new tolerance traits in other Lotus species used as forage.


Assuntos
Lotus , Cloreto de Sódio , Estresse Fisiológico , Lotus/efeitos dos fármacos , Lotus/genética , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Salinidade , Cloreto de Sódio/toxicidade , Estresse Fisiológico/genética , Água/farmacologia
2.
Plant Biol (Stuttg) ; 18(4): 703-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27007305

RESUMO

A common stress on plants is NaCl-derived soil salinity. Genus Lotus comprises model and economically important species, which have been studied regarding physiological responses to salinity. Leaf area ratio (LAR), root length ratio (RLR) and their components, specific leaf area (SLA) and leaf mass fraction (LMF) and specific root length (SRL) and root mass fraction (RMF) might be affected by high soil salinity. We characterised L. tenuis, L. corniculatus, L. filicaulis, L. creticus, L. burtii and L. japonicus grown under different salt concentrations (0, 50, 100 and 150 mm NaCl) on the basis of SLA, LMF, SRL and RMF using PCA. We also assessed effects of different salt concentrations on LAR and RLR in each species, and explored whether changes in these traits provide fitness benefit. Salinity (150 mm NaCl) increased LAR in L. burtii and L. corniculatus, but not in the remaining species. The highest salt concentration caused a decrease of RLR in L. japonicus Gifu, but not in the remaining species. Changes in LAR and RLR would not be adaptive, according to adaptiveness analysis, with the exception of SLA changes in L. corniculatus. PCA revealed that under favourable conditions plants optimise surfaces for light and nutrient acquisition (SLA and SRL), whereas at higher salt concentrations they favour carbon allocation to leaves and roots (LMF and RMF) in detriment to their surfaces. PCA also showed that L. creticus subjected to saline treatment was distinguished from the remaining Lotus species. We suggest that augmented carbon partitioning to leaves and roots could constitute a salt-alleviating mechanism through toxic ion dilution.


Assuntos
Lotus/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Biomassa , Carbono/metabolismo , Luz , Lotus/fisiologia , Lotus/efeitos da radiação , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Salinidade , Tolerância ao Sal , Solo/química , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA