Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Microorganisms ; 12(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543671

RESUMO

More than one million sexually transmitted infections (STIs) occur every day, and Trichomonas vaginalis is responsible for more than 156 million cases each year worldwide. Nevertheless, epidemiological studies of this parasite in Europe are scarce. The aim of this study was to evaluate the impact that the COVID-19 pandemic may have had in the diagnosis and epidemiology of trichomoniasis. All available data from January 2018 to December 2021 for T. vaginalis isolation on gynecologic patients attending a Spanish Tertiary Hospital were analyzed. Pre-pandemic results (2018-2019) were compared to pandemic results (2020-2021). The pre-pandemic T. vaginalis prevalence in women was 1.15% (95% Confidence Interval, CI: 0.94-1.41), and significantly decreased in 2020-2021 (0.77%, 95% CI: 0.57-1.03; p = 0.025). Demographic nor clinical characteristics of women diagnosed with trichomoniasis did not statistically differ between the periods, although an increase in chlamydia co-infected patients was observed in the latest (from 8% in 2018-2019 to 19% in 2020-2021). This study has detected a decrease in the diagnosis of trichomoniasis; however, this is probably due to the increase in the healthcare pressure triggered by the pandemic. More than 75% of the cases diagnosed in 2021 occurred in the second half, which suggests that special attention should be given to the evolution in the coming years once normality has been restored in hospitals. Moreover, these results warn of the lack of routine diagnosis of trichomoniasis during pregnancy and the absence of specific protocols for possible co-infections, which could become a strategy to reduce the growing trend of STIs, including T. vaginalis detection, as an interesting marker of sexual risk behaviors.

2.
J Enzyme Inhib Med Chem ; 37(1): 781-791, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35193444

RESUMO

Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 µM (CL-B5 strain) and 33.65 µM (Y strain), IC50 (BZ)=25.31 µM (CL-B5) and 22.73 µM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.


Assuntos
Antiprotozoários/farmacologia , Semicarbazonas/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Semicarbazonas/síntese química , Semicarbazonas/química , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 37: 127843, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556576

RESUMO

A series of 11 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles (2-12) has been prepared starting from 1-benzyl-5-nitroindazol-3-ol 13, and evaluated against sensitive and resistant isolates of the sexually transmitted protozoan Trichomonas vaginalis. Compounds 2, 3, 6, 9, 10 and 11 showed trichomonacidal profiles with IC50 < 20 µM against the metronidazole-sensitive isolate. Moreover, all these compounds submitted to cytotoxicity assays against mammalian cells exhibited low non-specific cytotoxic effects, except compounds 3 and 9 which displayed moderate cytotoxicity (CC50 = 74.7 and 59.1 µM, respectively). Those compounds with trichomonacidal effect were also evaluated against a metronidazole-resistant culture. Special mention deserve compounds 6 and 10, which displayed better IC50 values (1.3 and 0.5 µM respectively) than that of the reference drug (IC50 MTZ = 3.0 µM). The high activity of these compounds against the resistant isolate reinforces the absence of cross-resistance with the reference drug. The remarkable trichomonacidal results against resistant T. vaginalis isolates suggest the interest of 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles to be considered as good prototypes to continue in the development of new drugs with enhanced trichomonacidal activity, aiming to increase the non-existent drugs to face clinical resistance efficiently for those patients in whom therapy with 5-nitroimidazoles is contraindicated.


Assuntos
Antiparasitários/farmacologia , Indazóis/farmacologia , Tricomoníase/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Antiparasitários/síntese química , Antiparasitários/química , Relação Dose-Resposta a Droga , Resistência a Medicamentos/efeitos dos fármacos , Indazóis/síntese química , Indazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Tricomoníase/parasitologia
4.
Parasitol Res ; 119(6): 1915-1923, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32405804

RESUMO

Trichomoniasis is the most prevalent curable sexually transmitted infection (STI) worldwide and a risk factor for the acquisition of other STIs and adverse pregnancy outcomes. The objectives of this study were to determine the prevalence of T. vaginalis and related coinfections in women attending a third-level hospital of Madrid (Spain). A retrospective study of 24,173 vaginal exudates from women with suspected vaginitis was conducted between 2013 and 2017. Likewise, among T. vaginalis positive samples, co-occurrence with gonorrhea, chlamydia, syphilis, VIH, Mycoplasma hominis, and Ureaplasma urealyticum was checked. Moreover, seven T. vaginalis isolates from 2017 were randomly collected for endobionts, drug resistance, and microsatellite (MS) instability determinations. The prevalence of T. vaginalis was 0.8% between 2013 and 2017. Less than 20% of patients with trichomoniasis were submitted to a complete screening for other genital pathogens. From that, two patients were coinfected with chlamydia and three with syphilis. Surprisingly, 6.4% of positive samples were diagnosed among pregnant women, showing an alarming increase from 3.2% (2014) to 10% (2017). Among the isolates randomly analyzed, five carried T. vaginalis virus, five harbored mycoplasmas, and one was metronidazole-resistant. The molecular genotyping showed a high variability in the three MS evaluated. To our knowledge, this is the first study in Spain that evaluates the prevalence of trichomoniasis in general and pregnant population and includes biomolecular determinations. These results warn about the increasing prevalence and highlight the importance of including T. vaginalis detection in routine gynecological revisions with special emphasis on childbearing age women and patients with previous STIs.


Assuntos
Metronidazol/farmacologia , Simbiose , Centros de Atenção Terciária , Tricomoníase/epidemiologia , Trichomonas vaginalis , Adulto , Coinfecção , Resistência a Medicamentos , Feminino , Gonorreia/complicações , Humanos , Pessoa de Meia-Idade , Mycoplasma hominis/isolamento & purificação , Gravidez , Complicações Parasitárias na Gravidez/epidemiologia , Taxa de Gravidez , Prevalência , Estudos Retrospectivos , Espanha/epidemiologia , Tricomoníase/complicações , Tricomoníase/tratamento farmacológico
5.
ChemMedChem ; 13(12): 1246-1259, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29624912

RESUMO

Three different series of new 5-nitroindazole derivatives-1-(ω-aminoalkyl)-2-benzylindazolin-3-ones (series A; ten compounds), 3-(ω-aminoalkoxy)-2-benzylindazoles (series B; four compounds) and 3-alkylamino-2-benzylindazoles (series C; five compounds)-have been synthesized and evaluated against the protozoan parasites Trypanosoma cruzi, Leishmania amazonensis, and Trichomonas vaginalis: etiological agents of Chagas disease, cutaneous leishmaniasis, and trichomoniasis, respectively. Many indazoles of series A, B, and C were efficient against T. cruzi. Some compounds in series A, after successfully passing the preliminary screening for epimastigotes, exhibited activity values against amastigotes of several T. cruzi strains that were better than or similar to those shown by the reference drug benznidazole and displayed low nonspecific toxicity against mammalian cells. On the other hand, preliminary studies against promastigotes of L. amazonensis showed high leishmanicidal activity for some derivatives of series A and C. With regard to activity against T. vaginalis, some indazoles of series B and C were rather efficient against trophozoites of a metronidazole-sensitive isolate and showed low nonspecific toxicities toward Vero cell cultures. Additionally, some of these compounds displayed similar activity against metronidazole-sensitive and resistant isolates, showing the absence of cross-resistance between these derivatives and the reference drug.


Assuntos
Aminas/farmacologia , Indazóis/farmacologia , Tripanossomicidas/farmacologia , Aminas/síntese química , Aminas/química , Aminas/toxicidade , Animais , Chlorocebus aethiops , Indazóis/síntese química , Indazóis/química , Indazóis/toxicidade , Leishmania/efeitos dos fármacos , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Trichomonas vaginalis/efeitos dos fármacos , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos , Células Vero
6.
Eur J Med Chem ; 115: 295-310, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27017556

RESUMO

Two series of new 5-nitroindazole derivatives, 1-substituted 2-benzylindazolin-3-ones (6-29, series A) and 3-alkoxy-2-benzyl-2H-indazoles (30-37, series B), containing differently functionalized chains at position 1 and 3, respectively, have been synthesized starting from 2-benzyl-5-nitroindazolin-3-one 5, and evaluated against the protozoan parasites Trypanosoma cruzi and Trichomonas vaginalis, etiological agents of Chagas disease and trichomonosis, respectively. Many indazolinones of series A were efficient against different morphological forms of T. cruzi CL Brener strain (compounds 6, 7, 9, 10 and 19-21: IC50 = 1.58-4.19 µM for epimastigotes; compounds 6, 19-21 and 24: IC50 = 0.22-0.54 µM for amastigotes) being as potent as the reference drug benznidazole. SAR analysis suggests that electron-donating groups at position 1 of indazolinone ring are associated with an improved antichagasic activity. Moreover, compounds of series A displayed low unspecific toxicities against an in vitro model of mammalian cells (fibroblasts), which were reflected in high values of the selectivity indexes (SI). Compound 20 was also very efficient against amastigotes from Tulahuen and Y strains of T. cruzi (IC50 = 0.81 and 0.60 µM, respectively), showing low toxicity towards cardiac cells (LC50 > 100 µM). In what concerns compounds of series B, some of them displayed moderate activity against trophozoites of a metronidazole-sensitive isolate of T. vaginalis (35 and 36: IC50 = 9.82 and 7.25 µM, respectively), with low unspecific toxicity towards Vero cells. Compound 36 was also active against a metronidazole-resistant isolate (IC50 = 9.11 µM) and can thus be considered a good prototype for the development of drugs directed to T. vaginalis resistant to 5-nitroimidazoles.


Assuntos
Doença de Chagas/tratamento farmacológico , Indazóis/farmacologia , Indazóis/uso terapêutico , Trichomonas/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Animais , Indazóis/química , Relação Estrutura-Atividade
7.
Parasitology ; 143(1): 34-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26525913

RESUMO

A selection of 1,2-disubstituted 5-nitroindazolin-3-ones (1-19) and 3-alkoxy-5-nitroindazoles substituted at positions 1 (20-24) or 2 (25-39) from our in-house compound library were screened in vitro against the most common curable sexually transmitted pathogen, Trichomonas vaginalis. A total of 41% of the studied molecules (16/39) achieved a significant activity of more than 85% growth inhibition at the highest concentration assayed (100 µg mL(-1)). Among these compounds, 3-alkoxy-5-nitroindazole derivatives 23, 24, 25 and 27 inhibited parasite growth by more than 50% at 10 µg mL(-1). In addition, the first two compounds (23, 24) still showed remarkable activity at the lowest dose tested (1 µg mL(-1)), inhibiting parasite growth by nearly 40%. Their specific activity towards the parasite was corroborated by the determination of their non-specific cytotoxicity against mammalian cells. The four mentioned compounds exhibited non-cytotoxic profiles at all of the concentrations assayed, showing a fair antiparasitic selectivity index (SI > 7·5). In silico studies were performed to predict pharmacokinetic properties, toxicity and drug-score using Molinspiration and OSIRIS computational tools. The current in vitro results supported by the virtual screening suggest 2-substituted and, especially, 1-substituted 3-alkoxy-5-nitroindazoles as promising starting scaffolds for further development of novel chemical compounds with the main aim of promoting highly selective trichomonacidal lead-like drugs with adequate pharmacokinetic and toxicological profiles.


Assuntos
Antitricômonas/farmacologia , Indazóis/farmacologia , Tricomoníase/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Álcoois/química , Animais , Antitricômonas/efeitos adversos , Antitricômonas/química , Sobrevivência Celular , Chlorocebus aethiops , Simulação por Computador , Indazóis/efeitos adversos , Indazóis/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Células Vero
8.
Eur J Med Chem ; 94: 276-83, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25771033

RESUMO

Two series of ten novel 7-nitroquinoxalin-2-ones and ten 6-nitroquinoxaline-2,3-diones with diverse substituents at positions 1 and 4 were synthesized and evaluated against the sexually transmitted parasite Trichomonas vaginalis. Furthermore, diverse molecular and drug-likeness properties were analyzed to predict the oral bioavailability following the Lipinski's "rule of five". 7-Nitroquinoxalin-2-one derivatives displayed moderate to high in vitro activity while the efficiency of most nitroquinoxaline-2,3-diones was rather low; both kinds of compounds did not show cytotoxic effects in mammalian cells. 7-Nitro-4-(3-piperidinopropyl)quinoxalin-2-one 9 achieved the highest trichomonacidal activity (IC50 = 18.26 µM) and was subsequently assayed in vivo in a murine model of trichomonosis. A 46.13% and a 50.70% reduction of pathogenic injuries were observed in the experimental groups treated orally during 7 days with 50 mg/kg and 100 mg/kg doses. The results obtained in the biological assays against T. vaginalis indicate that compounds with ω-(dialkylamino)alkyl substituents and a keto group at positions 4 and 2 of quinoxaline ring, respectively, provide interesting structural cores to develop novel prototypes to enhance the nitroquinoxalinones activity as trichomonacidal agents with interesting ADME properties according to virtual screening analysis.


Assuntos
Antitricômonas/síntese química , Antitricômonas/farmacologia , Quinoxalinas/farmacologia , Tricomoníase/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Animais , Antitricômonas/química , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Feminino , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Células Vero
9.
J Microbiol Methods ; 105: 162-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25107376

RESUMO

In the current report, a sequential step-wise methodology based on in silico, in vitro and in vivo experimental procedures for the prompt detection of potential trichomonacidal drugs is proposed. A combinatorial of 12 QSAR (Quantitative Structure-Activity Relationship) models based on Linear Discrimination Analysis (LDA) are suggested for the rational identification of new trichomonacidal drugs from virtual screening of in house chemical libraries and drug databases. Subsequently, compounds selected as potential anti-trichomonas are screened in vitro against Trichomonas vaginalis. Finally, molecules with specific trichomonacidal activity are evaluated in vivo. Herein, different molecules were exposed to the proposed methodology. Firstly, the agents were virtually screened and two of the eight molecules (G-1 and dimetridazole) were classified as trichomonacidals by the 12 models. Subsequently both drugs were proved in vitro and in vivo following the workflow procedure. Although a remarkable in vitro activity was observed in both cases, dimetridazole achieved higher MIC100 activity than metronidazole against the resistant isolate. Furthermore, the in vivo models showed a remarkable reduction of lesions of more than 55% in both compounds. These observations support the current flowchart screening and suggest the use of dimetridazole as a promising drug-like scaffold for novel therapeutic alternatives against T. vaginalis resistant infections.


Assuntos
Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Trichomonas vaginalis/efeitos dos fármacos , Animais , Antiprotozoários/uso terapêutico , Biologia Computacional , Ciclopentanos/isolamento & purificação , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Dimetridazol/isolamento & purificação , Dimetridazol/farmacologia , Dimetridazol/uso terapêutico , Modelos Animais de Doenças , Feminino , Camundongos , Testes de Sensibilidade Parasitária , Relação Quantitativa Estrutura-Atividade , Quinolinas/isolamento & purificação , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Ratos Wistar , Fatores de Tempo , Tricomoníase/tratamento farmacológico
10.
Parasitol Int ; 63(2): 427-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24412628

RESUMO

The nucleotide sequence of the 5.8S rRNA gene and the flanked internal transcribed spacer (ITS) regions of six Trichomonas vaginalis isolates with different metronidazole sensitivity and geographic origin were genotyped. A multiple sequence alignment was performed with different sequences of other isolates available at the GenBank/EMBL/DDBJ databases, which revealed 5 different sequence patterns. Although a stable mutation in position 66 of the ITS1 (C66T) was observed in 26% (9/34) of the T. vaginalis sequences analyzed, there was 99.7% ITS nucleotide sequence identity among isolates for this sequence. The nucleotide sequence variation among other species of the genus Trichomonas ranged from 3.4% to 9.1%. Surprisingly, the % identity between T. vaginalis and Pentatrichomonas hominis was ~83%. There was >40% divergence in the ITS sequence between T. vaginalis and Tritrichomonas spp., including Tritrichomonas augusta, Tritrichomonas muris, and Tritrichomonas nonconforma and with Tetratrichomonas prowazeki. Dendrograms grouped the trichomonadid sequences in robust clades according to their genera. The absence of nucleotide divergence in the hypervariable ITS regions between T. vaginalis isolates suggests the early divergence of the parasite. Importantly, these data show this ITS1-5.8S rRNA-ITS2 region suitable for inter-species differentiation.


Assuntos
DNA Espaçador Ribossômico/genética , Trichomonas vaginalis/genética , Animais , Sequência de Bases , Filogenia , Alinhamento de Sequência , Especificidade da Espécie
11.
Parasitol Res ; 113(3): 1049-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24435615

RESUMO

Twelve molecules from a series of 35 new 5-nitroindazole derivatives, selected from a successful primary screening on Trypanosoma cruzi epimastigotes, have been evaluated against intracellular amastigotes according to the previous results of their trypanocidal activity and unspecific cytotoxicity. 2-Benzyl-1-propyl (22), 2-benzyl-1-isopropyl (23), and 2-benzyl-1-butyl (24) 5-nitroindazolin-3-ones have inhibited the growth of amastigotes similarly to the reference drugs benznidazole and nifurtimox, inducing complete growth inhibition at concentrations lower than 8 µM (IC50 < 5 µM) and accomplishing great selectivity indexes on the intracellular form of the parasite (SI > 30). Further in vivo assays were developed only for two of the most active molecules (22 and 24), reaching significant reductions in parasitemia levels (52 % and 77%, respectively) after their oral administration to infected mice. In addition, none of the mice in experimental and benznidazole groups died, unlike in the control group which is only treated with the vehicle. The trypanocidal properties found in some of the 5-nitroindazole derivatives assayed in the present work represent an interesting contribution to the urgent need for searching new antichagasic drugs.


Assuntos
Indazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Indazóis/química , Camundongos
12.
Eur J Med Chem ; 58: 214-27, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23124218

RESUMO

Chagas disease chemotherapy, currently based on only two drugs, nifurtimox and benznidazole, is far from satisfactory and therefore the development of new antichagasic compounds remains an important goal. On the basis of antichagasic properties previously described for some 1,2-disubstituted 5-nitroindazolin-3-ones (21, 33) and in order to initiate the optimization of activity of this kind of compounds, we have prepared a series of related analogs (22-32, 34-38, 58 and 59) and tested in vitro these products against epimastigote forms of Trypanosoma cruzi. 2-Benzyl-1-propyl (22), 2-benzyl-1-isopropyl (23) and 2-benzyl-1-butyl (24) derivatives have shown high trypanocidal activity and low unspecific toxicity. Other indazole derivatives with different substitution patterns (1-substituted 3-alkoxy-1H-indazoles and 2-substituted 3-alkoxy-2H-indazoles), arising from the synthetic procedures used to prepare the mentioned indazolinones, have moderate to low effectiveness. The exploration of SAR information using the concept of an activity landscape has been carried out with SARANEA software. We have also searched for structural similarities between 225 known antiprotozoan drugs and compound 22. The results confirm that compounds 22-24 constitute promising leads and that 5-nitroindazolin-3-one system is a novel anti-T. cruzi scaffold which may represent an important therapeutic alternative for the treatment of Chagas disease.


Assuntos
Indazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Relação Dose-Resposta a Droga , Indazóis/síntese química , Indazóis/química , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
13.
ChemMedChem ; 4(1): 78-87, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19025734

RESUMO

Bis(indazol-3-ol) derivatives (5, 30-38) were prepared by alkylation of 3-alkoxyindazoles with alpha,omega-dibromides, followed by removal of the O-protecting groups. These compounds were subsequently evaluated as inhibitors of biocrystallization of ferriprotoporphyrin IX (heme) to hemozoin, a Plasmodium detoxification specific process. Most bis(5-nitroindazol-3-ols) were good inhibitors, however, a denitro analogue (38), the intermediate bis(3-alkoxyindazoles) (15-29) as well as bis(indazolin-3-ones) (39-42) were not active, showing the importance of the NO(2) and OH groups in the inhibition process.


Assuntos
Antimaláricos/química , Hemeproteínas/antagonistas & inibidores , Hemina/antagonistas & inibidores , Indazóis/química , Animais , Antimaláricos/síntese química , Antimaláricos/farmacologia , Hemeproteínas/química , Hemina/química , Indazóis/síntese química , Indazóis/farmacologia , Concentração Inibidora 50 , Camundongos , Plasmodium berghei/efeitos dos fármacos
14.
J Biomol Screen ; 13(8): 785-94, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18753687

RESUMO

Bond-based quadratic indices, new TOMOCOMD-CARDD molecular descriptors, and linear discriminant analysis (LDA) were used to discover novel lead trichomonacidals. The obtained LDA-based quantitative structure-activity relationships (QSAR) models, using nonstochastic and stochastic indices, were able to classify correctly 87.91% (87.50%) and 89.01% (84.38%) of the chemicals in training (test) sets, respectively. They showed large Matthews correlation coefficients of 0.75 (0.71) and 0.78 (0.65) for the training (test) sets, correspondingly. Later, both models were applied to the virtual screening of 21 chemicals to find new lead antitrichomonal agents. Predictions agreed with experimental results to a great extent because a correct classification for both models of 95.24% (20 of 21) of the chemicals was obtained. Of the 21 compounds that were screened and synthesized, 2 molecules (chemicals G-1, UC-245) showed high to moderate cytocidal activity at the concentration of 10 microg/ml, another 2 compounds (G-0 and CRIS-148) showed high cytocidal activity only at the concentration of 100 microg/ml, and the remaining chemicals (from CRIS-105 to CRIS-153, except CRIS-148) were inactive at these assayed concentrations. Finally, the best candidate, G-1 (cytocidal activity of 100% at 10 microg/ml) was in vivo assayed in ovariectomized Wistar rats achieving promising results as a trichomonacidal drug-like compound.


Assuntos
Antitricômonas/química , Antitricômonas/farmacologia , Desenho Assistido por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Software , Trichomonas vaginalis/efeitos dos fármacos , Adulto , Animais , Antitricômonas/uso terapêutico , Análise Discriminante , Farmacorresistência Bacteriana , Feminino , Humanos , Estrutura Molecular , Ovariectomia , Ratos , Ratos Wistar , Tricomoníase/tratamento farmacológico
15.
J Comput Aided Mol Des ; 22(8): 523-40, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18483767

RESUMO

Trichomonas vaginalis (Tv) is the causative agent of the most common, non-viral, sexually transmitted disease in women and men worldwide. Since 1959, metronidazole (MTZ) has been the drug of choice in the systemic treatment of trichomoniasis. However, resistance to MTZ in some patients and the great cost associated with the development of new trichomonacidals make necessary the development of computational methods that shorten the drug discovery pipeline. Toward this end, bond-based linear indices, new TOMOCOMD-CARDD molecular descriptors, and linear discriminant analysis were used to discover novel trichomonacidal chemicals. The obtained models, using non-stochastic and stochastic indices, are able to classify correctly 89.01% (87.50%) and 82.42% (84.38%) of the chemicals in the training (test) sets, respectively. These results validate the models for their use in the ligand-based virtual screening. In addition, they show large Matthews' correlation coefficients (C) of 0.78 (0.71) and 0.65 (0.65) for the training (test) sets, correspondingly. The result of predictions on the 10% full-out cross-validation test also evidences the robustness of the obtained models. Later, both models are applied to the virtual screening of 12 compounds already proved against Tv. As a result, they correctly classify 10 out of 12 (83.33%) and 9 out of 12 (75.00%) of the chemicals, respectively; which is the most important criterion for validating the models. Besides, these classification functions are applied to a library of seven chemicals in order to find novel antitrichomonal agents. These compounds are synthesized and tested for in vitro activity against Tv. As a result, experimental observations approached to theoretical predictions, since it was obtained a correct classification of 85.71% (6 out of 7) of the chemicals. Moreover, out of the seven compounds that are screened, synthesized and biologically assayed, six compounds (VA7-34, VA7-35, VA7-37, VA7-38, VA7-68, VA7-70) show pronounced cytocidal activity at the concentration of 100 mug/ml at 24 h (48 h) within the range of 98.66%-100% (99.40%-100%), while only two molecules (chemicals VA7-37 and VA7-38) show high cytocidal activity at the concentration of 10 mug/ml at 24 h (48 h): 98.38% (94.23%) and 97.59% (98.10%), correspondingly. The LDA-assisted QSAR models presented here could significantly reduce the number of synthesized and tested compounds and could increase the chance of finding new chemical entities with anti-trichomonal activity.


Assuntos
Antitricômonas/química , Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Algoritmos , Animais , Antitricômonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Físico-Química , Biologia Computacional/métodos , Análise Discriminante , Modelos Lineares , Metronidazol/farmacologia , Estrutura Molecular , Quinoxalinas/química , Quinoxalinas/farmacologia , Software , Validação de Programas de Computador , Processos Estocásticos , Trichomonas vaginalis/efeitos dos fármacos
16.
Bioorg Med Chem ; 14(19): 6502-24, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16875830

RESUMO

Existing Trichomonas vaginalis therapies are out of reach for most trichomoniasis people in developing countries and, where available, they are limited by their toxicity (mainly in pregnant women) and their cost. New antitrichomonal agents are needed to combat emerging metronidazole-resistant trichomoniasis and reduce the side effects associated with currently available drugs. Toward this end, atom-based bilinear indices, a new TOMOCOMD-CARDD molecular descriptor, and linear discriminant analysis (LDA) were used to discover novel, potent, and non-toxic lead trichomonacidal chemicals. Two discriminant functions were obtained with the use of non-stochastic and stochastic atom-type bilinear indices for heteroatoms and H-bonding of heteroatoms. These atomic-level molecular descriptors were calculated using a weighting scheme that includes four atomic labels, namely atomic masses, van der Waals volumes, atomic polarizabilities, and atomic electronegativities in Pauling scale. The obtained LDA-based QSAR models, using non-stochastic and stochastic indices, were able to classify correctly 94.51% (90.63%) and 93.41% (93.75%) of the chemicals in training (test) sets, respectively. They showed large Matthews' correlation coefficients (C); 0.89 (0.79) and 0.87 (0.85), for the training (test) sets, correspondingly. The result of predictions on the 15% full-out cross-validation test also evidenced the robustness and predictive power of the obtained models. In addition, canonical regression analyses corroborated the statistical quality of these models (R(can) of 0.749 and of 0.845, correspondingly); they were also used to compute biological activity canonical scores for each compound. On the other hand, a close inspection of the molecular descriptors included in both equations showed that several of these molecular fingerprints are strongly interrelated with each other. Therefore, these models were orthogonalized using the Randic orthogonalization procedure. These classification functions were then applied to find new lead antitrichomonal agents and six compounds were selected as possible active compounds by computational screening. The designed compounds were synthesized and tested for in vitro activity against T. vaginalis. Out of the six compounds that were designed, and synthesized, three molecules (chemicals VA5-5a, VA5-5c, and VA5-12b) showed high to moderate cytocidal activity at the concentration of 10 microg/ml, other two compounds (VA5-8pre and VA5-8) showed high cytocidal and cytostatic activity at the concentration of 100 microg/ml and 10 microg/ml, correspondingly, and the remaining chemical (compound VA5-5e) was inactive at these assayed concentrations. Nonetheless, these compounds possess structural features not seen in known trichomonacidal compounds and thus can serve as excellent leads for further optimization of antitrichomonal activity. The LDA-based QSAR models presented here can be considered as a computer-assisted system that could potentially significantly reduce the number of synthesized and tested compounds and increase the chance of finding new chemical entities with antitrichomonal activity.


Assuntos
Antitricômonas/síntese química , Antitricômonas/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Algoritmos , Animais , Antitricômonas/classificação , Inteligência Artificial , Análise por Conglomerados , Biologia Computacional , Simulação por Computador , Interpretação Estatística de Dados , Bases de Dados Factuais , Ligantes , Modelos Lineares , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Processos Estocásticos , Relação Estrutura-Atividade , Trichomonas vaginalis/efeitos dos fármacos
17.
Bioorg Med Chem Lett ; 16(7): 1898-904, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16455249

RESUMO

The antitrypanosomal activity of 10 already synthesized compounds was in silico predicted as well as in vitro and in vivo explored against Trypanosoma cruzi. For the computational study, an approach based on non-stochastic linear fingerprints to the identification of potential antichagasic compounds is introduced. Molecular structures of 66 organic compounds, 28 with antitrypanosomal activity and 38 having other clinical uses, were parameterized by means of the TOMOCOMD-CARDD software. A linear classification function was derived allowing the discrimination between active and inactive compounds with a confidence of 95%. As predicted, seven compounds showed antitrypanosomal activity (%AE>70) against epimastigotic forms of T. cruzi at a concentration of 100mug/mL. After an unspecific cytotoxic assay, three compounds were evaluated against amastigote forms of the parasite. An in vivo test was carried out for one of the studied compounds.


Assuntos
Antiprotozoários/química , Trypanosoma/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Ligantes
18.
Bioorg Med Chem ; 13(22): 6264-75, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16115770

RESUMO

A non-stochastic quadratic fingerprints-based approach is introduced to classify and design, in a rational way, new antitrypanosomal compounds. A data set of 153 organic chemicals, 62 with antitrypanosomal activity and 91 having other clinical uses, was processed by a k-means cluster analysis to design training and predicting data sets. Afterwards, a linear classification function was derived allowing the discrimination between active and inactive compounds. The model classifies correctly more than 93% of chemicals in both training and external prediction groups. The predictability of this discriminant function was also assessed by a leave-group-out experiment, in which 10% of the compounds were removed at random at each time and their activity predicted a posteriori. In addition, a comparison with models generated using four well-known families of 2D molecular descriptors was carried out. As an experiment of virtual lead generation, the present TOMOCOMD approach was finally satisfactorily applied on the virtual evaluation of 10 already synthesized compounds. The in vitro antitrypanosomal activity of this series against epimastigotes forms of Trypanosomal cruzi was assayed. The model was able to predict correctly the behaviour of these compounds in 90% of the cases.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Desenho de Fármacos , Tripanossomicidas/química , Animais , Análise por Conglomerados , Análise Discriminante , Testes de Sensibilidade Parasitária , Tripanossomicidas/classificação , Trypanosoma cruzi/efeitos dos fármacos
19.
Bioorg Med Chem Lett ; 15(17): 3838-43, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16005626

RESUMO

A computational (virtual) screening test to identify potential trichomonacidals has been developed. Molecular structures of trichomonacidal and non-trichomonacidal drugs were represented using stochastic and non-stochastic atom-based quadratic indices and a linear discrimination analysis (LDA) was trained to classify molecules regarding their antiprotozoan activity. Validation tests revealed that our LDA-QSAR models recognize at least 88.24% of trichomonacidal lead-like compounds and suggest using this methodology in virtual screening protocols. These classification functions were then applied to find new lead antitrichomonal compounds. In this connection, the biological assays of eight compounds, selected by computational screening using the present models, give good results (87.50% of good classification). In general, most of the compounds showed high activity against Trichomonas vaginalis at the concentration of 100 microg/ml and low cytotoxicity to this concentration. In particular, two heterocyclic derivatives (VA7-67 and VA7-69) maintained their efficacy at 10 microg/ml with an important trichomonacidal activity (100.00% of reduction), but it is remarkable that the compound VA7-67 did not show cytotoxic effects in macrophage cultivations. This result opens a door to a virtual study considering a higher variability of the structural core already evaluated, as well as of other chemicals not included in this study.


Assuntos
Antitricômonas/química , Avaliação Pré-Clínica de Medicamentos/métodos , Compostos Heterocíclicos/química , Interface Usuário-Computador , Animais , Antitricômonas/classificação , Simulação por Computador , Relação Estrutura-Atividade , Trichomonas vaginalis/efeitos dos fármacos
20.
Curr Drug Discov Technol ; 2(4): 245-65, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16475921

RESUMO

Computational approaches are developed to design or rationally select, from structural databases, new lead trichomonacidal compounds. First, a data set of 111 compounds was split (design) into training and predicting series using hierarchical and partitional cluster analyses. Later, two discriminant functions were derived with the use of non-stochastic and stochastic atom-type linear indices. The obtained LDA (linear discrimination analysis)-based QSAR (quantitative structure-activity relationship) models, using non-stochastic and stochastic descriptors were able to classify correctly 95.56% (90.48%) and 91.11% (85.71%) of the compounds in training (test) sets, respectively. The result of predictions on the 10% full-out cross-validation test also evidenced the quality (robustness, stability and predictive power) of the obtained models. These models were orthogonalized using the Randic orthogonalization procedure. Afterwards, a simulation experiment of virtual screening was conducted to test the possibilities of the classification models developed here in detecting antitrichomonal chemicals of diverse chemical structures. In this sense, the 100.00% and 77.77% of the screened compounds were detected by the LDA-based QSAR models (Eq. 13 and Eq. 14, correspondingly) as trichomonacidal. Finally, new lead trichomonacidals were discovered by prediction of their antirichomonal activity with obtained models. The most of tested chemicals exhibit the predicted antitrichomonal effect in the performed ligand-based virtual screening, yielding an accuracy of the 90.48% (19/21). These results support a role for TOMOCOMD-CARDD descriptors in the biosilico discovery of new compounds.


Assuntos
Antitricômonas/síntese química , Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Software , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA