Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 173: 167-183, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984627

RESUMO

The complex mechanics of the gastric wall facilitates the main digestive tasks of the stomach. However, the interplay between the mechanical properties of the stomach, its microstructure, and its vital functions is not yet fully understood. Importantly, the pig animal model is widely used in biomedical research for preliminary or ethically prohibited studies of the human digestion system. Therefore, this study aims to thoroughly characterize the mechanical behavior and microstructure of the porcine stomach. For this purpose, multiple quasi-static mechanical tests were carried out with three different loading modes, i.e., planar biaxial extension, radial compression, and simple shear. Stress-relaxation tests complemented the quasi-static experiments to evaluate the deformation and strain-dependent viscoelastic properties. Each experiment was conducted on specimens of the complete stomach wall and two separate layers, mucosa and muscularis, from each of the three gastric regions, i.e., fundus, body, and antrum. The significant preconditioning effects and the considerable regional and layer-specific differences in the tissue response were analyzed. Furthermore, the mechanical experiments were complemented with histology to examine the influence of the microstructural composition on the macrostructural mechanical response and vice versa. Importantly, the shear tests showed lower stresses in the complete wall compared to the single layers which the loose network of submucosal collagen might explain. Also, the stratum arrangement of the muscularis might explain mechanical anisotropy during tensile tests. This study shows that gastric tissue is characterized by a highly heterogeneous microstructure with regional variations in layer composition reflecting not only functional differences but also diverse mechanical behavior. STATEMENT OF SIGNIFICANCE: Unfortunately, only few experimental data on gastric tissue are available for an adequate material parameter and model estimation. The present study therefore combines layer- and region-specific stomach wall mechanics obtained under multiple loading conditions with histological insights into the heterogeneous microstructure. On the one hand, the extensive data sets of this study expand our understanding of the interplay between gastric mechanics, motility and functionality, which could help to identify and treat associated pathologies. On the other hand, such data sets are of high relevance for the constitutive modeling of stomach tissue, and its application in the field of medical engineering, e.g., in the development of surgical staplers and the improvement of bariatric surgical interventions.


Assuntos
Colágeno , Estômago , Suínos , Animais , Humanos , Estômago/fisiologia , Modelos Animais , Colágeno/química , Anisotropia , Testes Mecânicos , Fenômenos Biomecânicos , Estresse Mecânico
2.
IEEE Trans Biomed Eng ; 71(1): 97-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37440379

RESUMO

OBJECTIVE: This study explores the feasibility of coupling Electrical Impedance Tomography (EIT) to a standard-of-care laparoscopic surgical stapler, stapler+EIT, with the long-term goal of enabling intraoperative tissue differentiation for tumor margin detection. METHODS: Two custom printed-circuit-board-based electrode arrays with 60 and 8 electrodes, respectively, matching the stapler geometry, served as the jaws of an electrode-integrated surrogate stapler+EIT device. The device was evaluated through a series of simulations and bench-top imaging experiments of agar-gel phantoms and bovine tissue samples to evaluate the technique and determine optimal imaging parameters. RESULTS: Electrodes localized to only one jaw (the 60-electrode side) of the stapler outperformed a dual-jaw distribution of electrodes. Using this one-sided electrode array, reconstructions achieved an Area-Under-the-Curve (AUC) ≥ 0.94 for inclusions with conductivity contrasts of ≥30% for any size considered on measured agar-gel tests, and an AUC of 0.80 for bovine tissue samples. CONCLUSION: A stapler+EIT algorithm has been tuned and evaluated on challenging phantom tests and demonstrated to produce accurate reconstructions. SIGNIFICANCE: This work is an important step in the development of a surgical stapler+EIT technique for margin assessment.


Assuntos
Grampeadores Cirúrgicos , Tomografia , Animais , Bovinos , Tomografia/métodos , Impedância Elétrica , Ágar , Tomografia Computadorizada por Raios X , Eletrodos
3.
J Electr Bioimpedance ; 12(1): 26-33, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34413920

RESUMO

The incorporation of sensors onto the stapling platform has been investigated to overcome the disconnect in our understanding of tissue handling by surgical staplers. The goal of this study was to explore the feasibility of in vivo porcine tissue differentiation using bioimpedance data and machine learning methods. In vivo electrical impedance measurements were obtained in 7 young domestic pigs, using a logarithmic sweep of 50 points over a frequency range of 100 Hz to 1 MHz. Tissues studied included lung, liver, small bowel, colon, and stomach, which was further segmented into fundus, body, and antrum. The data was then parsed through MATLAB's classification learner to identify the best algorithm for tissue type differentiation. The most effective classification scheme was found to be cubic support vector machines with 86.96% accuracy. When fundus, body and antrum were aggregated together as stomach, the accuracy improved to 88.03%. The combination of stomach, small bowel, and colon together as GI tract improved accuracy to 99.79% using fine k nearest neighbors. The results suggest that bioimpedance data can be effectively used to differentiate tissue types in vivo. This study is one of the first that combines in vivo bioimpedance tissue data across multiple tissue types with machine learning methods.

4.
Med Devices (Auckl) ; 11: 267-273, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147383

RESUMO

BACKGROUND: Wound healing is a goal for advanced technology in the surgical space to benefit clinical outcomes. Surgical staplers are commonly used in a variety of open and minimally invasive abdominal and thoracic procedures. Assessment of wound healing traits, such as perfusion, has been challenging due to technical limitations. A novel technique that utilizes micro-computed tomography methodology to measure perfusion was designed to compare the micro-perfusion of staple lines between commercial stapler reloads that employ different staple height strategies. MATERIALS AND METHODS: Following an Institutional Animal Care and Use Committee-approved protocol, rats were euthanized and immediately heparinized prior to a subtotal gastrectomy with either graduated-height or single-height staples. Rats were then perfused with barium, following which stomachs were removed and immediately fixed in formalin to prevent degradation. Stomachs were then imaged using micro-computed tomography and subsequent analysis was utilized to quantify fluid volume and patent vasculature proximity to staples within the staple line region for each group. RESULTS: Average perfusion volume was significantly higher with graduated-height staples (0.33% ± 0.18%) compared to single-height staples (0.16% ± 0.09%, P=0.011). Average vessel-to-staple line distance was not significant but trended lower with graduated-height staples (0.35±0.02 mm) compared to single-height staples (0.36±0.03 mm, P=0.18). DISCUSSION: Graduated-height staples had significantly higher perfusion volume than single-height staples, which likely has a downstream benefit on wound healing and clinical outcomes. CONCLUSION: This study shows a higher perfusion volume around the staple lines using graduated-height staples as compared to single-height staples and this may contribute to better wound healing in patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA