Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 64(6): 1568-1581, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37013668

RESUMO

OBJECTIVE: Stereotactic laser amygdalohippocampotomy (SLAH) is an appealing option for patients with temporal lobe epilepsy, who often require intracranial monitoring to confirm mesial temporal seizure onset. However, given limited spatial sampling, it is possible that stereotactic electroencephalography (stereo-EEG) may miss seizure onset elsewhere. We hypothesized that stereo-EEG seizure onset patterns (SOPs) may differentiate between primary onset and secondary spread and predict postoperative seizure control. In this study, we characterized the 2-year outcomes of patients who underwent single-fiber SLAH after stereo-EEG and evaluated whether stereo-EEG SOPs predict postoperative seizure freedom. METHODS: This retrospective five-center study included patients with or without mesial temporal sclerosis (MTS) who underwent stereo-EEG followed by single-fiber SLAH between August 2014 and January 2022. Patients with causative hippocampal lesions apart from MTS or for whom the SLAH was considered palliative were excluded. An SOP catalogue was developed based on literature review. The dominant pattern for each patient was used for survival analysis. The primary outcome was 2-year Engel I classification or recurrent seizures before then, stratified by SOP category. RESULTS: Fifty-eight patients were included, with a mean follow-up duration of 39 ± 12 months after SLAH. Overall 1-, 2-, and 3-year Engel I seizure freedom probability was 54%, 36%, and 33%, respectively. Patients with SOPs, including low-voltage fast activity or low-frequency repetitive spiking, had a 46% 2-year seizure freedom probability, compared to 0% for patients with alpha or theta frequency repetitive spiking or theta or delta frequency rhythmic slowing (log-rank test, p = .00015). SIGNIFICANCE: Patients who underwent SLAH after stereo-EEG had a low probability of seizure freedom at 2 years, but SOPs successfully predicted seizure recurrence in a subset of patients. This study provides proof of concept that SOPs distinguish between hippocampal seizure onset and spread and supports using SOPs to improve selection of SLAH candidates.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/complicações , Convulsões/diagnóstico , Convulsões/cirurgia , Convulsões/complicações , Eletroencefalografia , Lasers , Imageamento por Ressonância Magnética
2.
Clin Neurophysiol ; 144: 142-150, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36088217

RESUMO

OBJECTIVE: Stereo-electroencephalography (SEEG) is inherently-three-dimensional and can be modeled using source localization. This study aimed to assess the validity of ictal SEEG source localization. METHODS: The dominant frequency at ictal onset was used for source localization in the time and frequency domains using rotating dipoles and current density maps. Validity was assessed by concordance with the epileptologist-defined seizure onset zone (conventional SOZ) and the surgical treatment volume (TV) of seizure-free versus non-seizure-free patients. RESULTS: Source localization was performed on 68 seizures from 27 patients. Median distance to nearest contact in the conventional SOZ was 7 (IQR 6-12) mm for time-domain dipoles. Current density predicted ictal activity with up to 86 % (60-87 %) accuracy. Distance from time-domain dipoles to the TV was smaller (P = 0.045) in seizure-free (2 [0-4] mm) versus non-seizure-free (12 [2-17] mm) patients, and predicted surgical outcome with 91 % sensitivity and 63 % specificity. Removing near-field data from contacts within the TV negated outcome prediction (P = 0.51). CONCLUSIONS: Source localization of SEEG accurately mapped ictal onset compared with conventional interpretation. Proximity of dipoles to the TV predicted seizure outcome when near-field recordings were analyzed. SIGNIFICANCE: Ictal SEEG source localization is useful in corroborating the epileptogenic zone, assuming near-field recordings are obtained.


Assuntos
Eletroencefalografia , Convulsões , Humanos , Eletroencefalografia/métodos , Convulsões/diagnóstico , Convulsões/cirurgia , Resultado do Tratamento , Período Pós-Operatório , Imageamento por Ressonância Magnética
3.
Front Neurol ; 13: 782880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211078

RESUMO

BACKGROUND: Stereo-electroencephalography (SEEG) uses a three-dimensional configuration of depth electrodes to localize epileptiform activity, but traditional analysis of SEEG is spatially restricted to the point locations of the electrode contacts. Interpolation of brain activity between contacts might allow for three-dimensional representation of epileptiform activity and avoid pitfalls of SEEG interpretation. OBJECTIVE: The goal of this study was to validate SEEG-based interictal source localization and assess the ability of this technique to monitor far-field activity in non-implanted brain regions. METHODS: Interictal epileptiform discharges were identified on SEEG in 26 patients who underwent resection, ablation, or disconnection of the suspected epileptogenic zone. Dipoles without (free) and with (scan) gray matter restriction, and current density (sLORETA and SWARM methods), were calculated using a finite element head model. Source localization results were compared to the conventional irritative zone (IZ) and the surgical treatment volumes (TV) of seizure-free vs. non-seizure-free patients. RESULTS: The median distance from dipole solutions to the nearest contact in the conventional IZ was 7 mm (interquartile range 4-15 mm for free dipoles and 4-14 mm for scan dipoles). The IZ modeled with SWARM predicted contacts within the conventional IZ with 83% (75-100%) sensitivity and 94% (88-100%) specificity. The proportion of current within the TV was greater in seizure-free patients (P = 0.04) and predicted surgical outcome with 45% sensitivity and 93% specificity. Dipole solutions and sLORETA results did not correlate with seizure outcome. Addition of scalp EEG led to more superficial modeled sources (P = 0.03) and negated the ability to predict seizure outcome (P = 0.23). Removal of near-field data from contacts within the TV resulted in smearing of the current distribution (P = 0.007) and precluded prediction of seizure freedom (P = 0.20). CONCLUSIONS: Source localization accurately represented interictal discharges from SEEG. The proportion of current within the TV distinguished between seizure-free and non-seizure-free patients when near-field recordings were obtained from the surgical target. The high prevalence of deep sources in this cohort likely obscured any benefit of concurrent scalp EEG. SEEG-based interictal source localization is useful in illustrating and corroborating the epileptogenic zone. Additional techniques are needed to localize far-field epileptiform activity from non-implanted brain regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA