Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 11(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36985223

RESUMO

In this work, a new Ch2 strain was isolated from soils polluted by agrochemical production wastes. This strain has a unique ability to utilize toxic synthetic compounds such as epsilon-caprolactam (CAP) as a sole carbon and energy source and the herbicide glyphosate (GP) as a sole source of phosphorus. Analysis of the nucleotide sequence of the 16S rRNA gene of Ch2 revealed that the strain belongs to the species Pseudomonas putida. This strain grew in the mineral medium containing CAP in a concentration range of 0.5 to 5.0 g/L and utilized 6-aminohexanoic acid and adipic acid, which are the intermediate products of CAP catabolism. The ability of strain Ch2 to degrade CAP is determined by a conjugative megaplasmid that is 550 kb in size. When strain Ch2 is cultured in a mineral medium containing GP (500 mg/L), more intensive utilization of the herbicide occurs in the phase of active growth. In the phase of declining growth, there is an accumulation of aminomethylphosphonic acid, which indicates that the C-N bond is the first site cleaved during GP degradation (glyphosate oxidoreductase pathway). Culture growth in the presence of GP during the early step of its degradation is accompanied by unique substrate-dependent changes in the cytoplasm, including the formation of vesicles of cytoplasmic membrane consisting of specific electron-dense content. There is a debate about whether these membrane formations are analogous to metabolosomes, where the primary degradation of the herbicide can take place. The studied strain is notable for its ability to produce polyhydroxyalkanoates (PHAs) when grown in mineral medium containing GP. At the beginning of the stationary growth phase, it was shown that, the amount and size of PHA inclusions in the cells drastically increased; they filled almost the entire volume of cell cytoplasm. The obtained results show that the strain P. putida Ch2 can be successfully used for the PHAs' production. Moreover, the ability of P. putida Ch2 to degrade CAP and GP determines the prospects of its application for the biological cleanup of CAP production wastes and in situ bioremediation of soil polluted with GP.

2.
Microorganisms ; 11(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36838338

RESUMO

epsilon-Caprolactam (Caprolactam, CAP), a monomer of the synthetic non-degradable polymer nylon-6, is the major wastewater component in the production of caprolactam and nylon-6. Biological treatment of CAP, using microbes could be a potent alternative to the current waste utilization techniques. This work focuses on the characterization and potential use of caprolactam-degrading bacterial strain BS3 isolated from soils polluted by CAP production wastes. The strain was identified as Brevibacterium epidermidis based on the studies of its morphological, physiological, and biochemical properties and 16S rRNA gene sequence analysis. This study is the first to report the ability of Brevibacterium to utilize CAP. Strain BS3 is an alcalo- and halotolerant organism, that grows within a broad range of CAP concentrations, from 0.5 up to 22.0 g/L, optimally at 1.0-2.0 g/L. A caprolactam biodegradation experiment using gas chromatography showed BS3 to degrade 1.0 g/L CAP over 160 h. In contrast to earlier characterized narrow-specific CAP-degrading bacteria, strain BS3 is also capable of utilizing linear nylon oligomers (oligomers of 6-aminohexanoic acid), CAP polymerization by-products, as sole sources of carbon and energy. The broad range of utilized toxic pollutants, the tolerance for high CAP concentrations, as well as the physiological properties of B. epidermidis BS3, determine the prospects of its use for the biological cleanup of CAP and nylon-6 production wastes that contain CAP, 6-aminohexanoic acid, and low molecular weight oligomer fractions.

3.
Microorganisms ; 10(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35056577

RESUMO

Microbial interactions play an important role in natural habitat. The long-term coevolution of various species leads to the adaptation of certain types of microorganisms as well as to the formation of a wide variety of interactions such as competitive, antagonistic, pathogenic and parasitic relationships. The aim of this work is a comprehensive study of a new ultramicrobacterium Microbacterium lacticum str. F2E, isolated from perennial oil sludge, which is characterized by high antimicrobial activity and a unique ultrastructural organization of the cell envelope, which includes globular surface ultrastructures with a high negative charge. A previously undescribed mechanism for the antagonistic action of the F2E strain against the prey bacterium is proposed. This mechanism is based on the ability to preferentially capture essential microelements, in which charge interactions and the property of phosphate accumulation may play a significant role. The revealed type of intermicrobial interaction can probably be attributed to the non-contact type antagonistic action in the absence of any diffuse factor secreted by the antagonistic bacteria.

4.
Microorganisms ; 9(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916732

RESUMO

The intensive development of agriculture leads to the depletion of land and a decrease in crop yields and in plant resistances to diseases. A large number of fertilizers and pesticides are currently used to solve these problems. Chemicals can enter the soil and penetrate into the groundwater and agricultural plants. Therefore, the primary task is to intensify agricultural production without causing additional damage to the environment. This problem can be partially solved using microorganisms with target properties. Microorganisms that combine several useful traits are especially valuable. The aim of this work was to search for new microbial strains, which are characterized by the ability to increase the bioavailability of nutrients, phytostimulation, the antifungal effect and the decomposition of some xenobiotics. A few isolated strains of the genera Bacillus and Pseudomonas were characterized by high activity against fungal phytopathogens. One of the bacterial strains identified as Priestiaaryabhattai on the basis of the 16S rRNA gene sequence was characterized by an unusual cellular morphology and development cycle, significantly different from all previously described bacteria of this genus. All isolated bacteria are capable of benzoate degradation as a sign of the ability to degrade aromatic compounds. Isolated strains were shown to be prospective agents in biotechnologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA