Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Toxicol In Vitro ; 59: 1-11, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30946968

RESUMO

At a joint workshop organized by RIVM and BfR, international experts from governmental institutes, regulatory agencies, industry, academia and animal welfare organizations discussed and provided recommendations for the development, validation and implementation of innovative 3R approaches in regulatory toxicology. In particular, an evolutionary improvement of our current approach of test method validation in the context of defined approaches or integrated testing strategies was discussed together with a revolutionary approach based on a comprehensive description of the physiological responses of the human body to chemical exposure and the subsequent definition of relevant and predictive in vitro, in chemico or in silico methods. A more comprehensive evaluation of biological relevance, scientific validity and regulatory purpose of new test methods and assessment strategies together with case studies that provide practical experience with new approaches were discussed as essential steps to build up the necessary confidence to facilitate regulatory acceptance.


Assuntos
Toxicologia/métodos , Alternativas aos Testes com Animais , Animais , Órgãos Governamentais , Regulamentação Governamental , Humanos , Medição de Risco , Testes de Toxicidade/métodos , Toxicologia/legislação & jurisprudência
2.
Toxicol In Vitro ; 50: 62-74, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29501630

RESUMO

This report describes the proceedings of the BfR-RIVM workshop on validation of alternative methods which was held 23 and 24 March 2017 in Berlin, Germany. Stakeholders from governmental agencies, regulatory authorities, universities, industry and the OECD were invited to discuss current problems concerning the regulatory acceptance and implementation of alternative test methods and testing strategies, with the aim to develop feasible solutions. Classical validation of alternative methods usually involves one to one comparison with the gold standard animal study. This approach suffers from the reductionist nature of an alternative test as compared to the animal study as well as from the animal study being considered as the gold standard. Modern approaches combine individual alternatives into testing strategies, for which integrated and defined approaches are emerging at OECD. Furthermore, progress in mechanistic toxicology, e.g. through the adverse outcome pathway approach, and in computational systems toxicology allows integration of alternative test battery results into toxicity predictions that are more fine-tuned to the human situation. The road towards transition to a mechanistically-based human-focused hazard and risk assessment of chemicals requires an open mind towards stepping away from the animal study as the gold standard and defining human biologically based regulatory requirements for human hazard and risk assessment.


Assuntos
Alternativas aos Testes com Animais/métodos , Medição de Risco/métodos , Testes de Toxicidade/métodos , Animais , Órgãos Governamentais , Humanos , Reprodutibilidade dos Testes
3.
Toxicol In Vitro ; 27(1): 441-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22906570

RESUMO

Skin irritation evaluation is an important endpoint for the safety assessment of cosmetic ingredients required by various regulatory authorities for notification and/or import of test substances. The present study was undertaken to investigate possible protocol adaptations of the currently validated in vitro skin irritation test methods based on reconstructed human epidermis (RhE) for the testing of plant extracts and natural botanicals. Due to their specific physico-chemical properties, such as lipophilicity, sticky/buttery-like texture, waxy/creamy foam characteristics, normal washing procedures can lead to an incomplete removal of these materials and/or to mechanical damage to the tissues, resulting in an impaired prediction of the true skin irritation potential of the materials. For this reason different refined washing procedures were evaluated for their ability to ensure appropriate removal of greasy and sticky substances while not altering the normal responses of the validated RhE test method. Amongst the different procedures evaluated, the use of a SDS 0.1% PBS solution to remove the sticky and greasy test material prior to the normal washing procedures was found to be the most suitable adaptation to ensure efficient removal of greasy and sticky in-house controls without affecting the results of the negative control. The predictive capacity of the refined SDS 0.1% washing procedure, was investigated by using twelve oily and viscous compounds having known skin irritation effects supported by raw and/or peer reviewed in vivo data. The normal washing procedure resulted in 8 out of 10 correctly predicted compounds as compared to 9 out of 10 with the refined washing procedures, showing an increase in the predictive ability of the assay. The refined washing procedure allowed to correctly identify all in vivo skin irritant materials showing the same sensitivity as the normal washing procedures, and further increased the specificity of the assay from 5 to 6 correct predictions out of 7 non irritants as compared to the normal washing procedures. In addition, when exposed to non-irritant oily and viscous materials, tissues rinsed with 0.1% SDS generally showed increased viabilities accompanied by decreased variabilities as compared to the normal washing procedures. Similar results were obtained when testing typical in-house natural botanical ingredients. In conclusion, the use of a refined washing procedure making use of SDS 0.1% in PBS was found a suitable procedure to ensure efficient removal of greasy and sticky materials, leading to an increased predictive capacity and decreased variability of the tissue responses while maintaining its sensitivity and not affecting untreated tissues morphology and viability.


Assuntos
Alternativas aos Testes com Animais/métodos , Irritantes/toxicidade , Extratos Vegetais/toxicidade , Testes de Irritação da Pele/métodos , Detergentes/química , Dimetil Sulfóxido/química , Epiderme/efeitos dos fármacos , Humanos , Técnicas In Vitro , Irritantes/química , Óleo Mineral/química , Extratos Vegetais/química , Cloreto de Sódio/química , Solventes/química , Viscosidade
4.
J Neurosci Res ; 71(4): 583-90, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12548715

RESUMO

Trimethyltin (TMT) is a neurotoxicant known to induce early microglial activation. The present study was undertaken to investigate the role played by these microglial cells in the TMT-induced neurotoxicity. The effects of TMT were investigated in monolayer cultures of isolated microglia or in neuron-enriched cultures and in neuron-microglia and astrocyte-microglia cocultures. The end points used were morphological criteria; evaluation of cell death and cell proliferation; and measurements of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) release in culture supernatant. The results showed that, in cultures of microglia, TMT (10(-6) M) caused, after a 5-day treatment, an increased release of TNF-alpha, without affecting microglial shape or cell viability. When microglia were cocultured with astrocytes, TNF-alpha release was decreased to undetectable levels. In contrast, in neuron-microglia cocultures, TNF-alpha levels were found to increase at lower concentrations of TMT (i.e., 10(-8) M). Moreover, at 10(-6) M of TMT, microglia displayed further morphological activation, as suggested by process retraction and by decrease in cell size. No morphological activation was observed in cultures of isolated microglial cells and in astrocyte-microglia cocultures. With regard to neurons, 10(-6) M of TMT induced about 30% of cell death, when applied to neuron-enriched cultures, whereas close to 100% of neuronal death was observed in neuron-microglia cocultures. In conclusion, whereas astrocytes may rather dampen the microglial activation by decreasing microglial TNF-alpha production, neuronal-microglial interactions lead to enhanced microglial activation. This microglial activation, in turn, exacerbates the neurotoxic effects of TMT. TNF-alpha may play a major role in such cell-cell communications.


Assuntos
Microglia/efeitos dos fármacos , Degeneração Neural/metabolismo , Neurônios/efeitos dos fármacos , Compostos de Trimetilestanho/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Células Cultivadas , Microglia/metabolismo , Microglia/patologia , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos
5.
Toxicol In Vitro ; 13(4-5): 555-60, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-20654515

RESUMO

Dibutyltin (DBT) compounds are used primarily as stabilizers for polyvinyl chloride (PVC) plastics. Small quantities can be released from PVC containers into stored liquids. The neurotoxicological potential of DBT was tested in aggregating brain cell cultures after a 10-day treatment with concentrations ranging from 10(-10) to 10(-6)m, either during an early developmental period, or during a phase of advanced maturation. Changes in protein content, DNA labelling and cell type-specific enzyme activities were measured as end points. DBT caused general cytotoxicity at 10(-6)m in both immature and differentiated cultures. At 10(-7)m, it affected the myelin content and the cholinergic neurons in both states of maturation, while GABAergic neurons remained unchanged. Astrocyte and oligodendrocyte markers were diminished at 10(-7)m of DBT exclusively in immature cultures. DBT uptake by undifferentiated and differentiated cells was similar at this concentration. Whereas trimethyltin (TMT) is known to induce gliosis and triethyltin (TET) to cause demyelination and affect GABAergic neurons, DBT appeared to be more toxic than TMT, and to present a distinct toxicological pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA