Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plants (Basel) ; 12(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375879

RESUMO

Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.

2.
Cell Mol Neurobiol ; 43(3): 1049-1059, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35835968

RESUMO

Epilepsy is one of the most common serious brain diseases worldwide. Programmed cell death (PCD), a cellular self-destruction phenomenon, has been greatly documented in neurodegenerative diseases. Pyroptosis is a well-known pro-inflammatory PCD, and its involvement in epilepsy has been reported in animal models of epilepsy and also epileptic patients. Canonical (caspase-1-dependent) and non-canonical (caspase-1-independent) pathways are two main mechanisms implicated in pyroptotic cell death. Mouse caspase-11 or human analogues caspase-4/5 induce the non-canonical pathway. In both pathways, membrane gasdermin (GSDMD) pores contribute to pro-inflammatory cytokine release and lead to membrane destabilization and cell lysis. IL-1ß and IL-18 are pro-inflammatory cytokines that are released following pyroptotic PCD. Brain inflammation increases excitability in the nervous system, promotes seizure activity, and is probably associated with the molecular and synaptic changes involved in epileptogenesis. Pro-inflammatory cytokines affect the glutamate and GABA neurotransmitter release as well as their receptors, thereby resulting in seizure activity. This review is intended to provide an overview of the current published works on pyroptotic cell death in epilepsy. The mechanisms by which pro-inflammatory cytokines, including IL-1ß and IL-18 can promote epileptic discharges were also collected. According to this survey, since the involvement of pyroptosis in the development of epilepsy has been established, pyroptosis-targeted therapies may represent a novel anti-epileptogenic strategy.


Assuntos
Epilepsia , Piroptose , Camundongos , Animais , Humanos , Piroptose/fisiologia , Interleucina-18 , Apoptose , Caspases/metabolismo , Citocinas/metabolismo , Convulsões , Inflamassomos/metabolismo
3.
Front Plant Sci ; 13: 1011985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212298

RESUMO

Abiotic stresses are major limiting factors that pose severe threats to agricultural production. Conventional breeding has significantly improved crop productivity in the last century, but traditional breeding has reached its maximum capacity due to the multigenic nature of abiotic stresses. Alternatively, biotechnological approaches could provide new opportunities for producing crops that can adapt to the fast-changing environment and still produce high yields under severe environmental stress conditions. Many stress-related genes have been identified and manipulated to generate stress-tolerant plants in the past decades, which could lead to further increase in food production in most countries of the world. This review focuses on the recent progress in using transgenic technology and gene editing technology to improve abiotic stress tolerance in plants, and highlights the potential of using genetic engineering to secure food and fiber supply in a world with an increasing population yet decreasing land and water availability for food production and fast-changing climate that will be largely hostile to agriculture.

4.
Mol Ther ; 30(5): 1966-1978, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34774754

RESUMO

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.7% leaf protein), have physical characteristics and taste/flavor like conventional gums, and no protein was lost during gum compression. CTB-ACE2 gum efficiently (>95%) inhibited entry of lentivirus spike or VSV-spike pseudovirus into Vero/CHO cells when quantified by luciferase or red fluorescence. Incubation of CTB-ACE2 microparticles reduced SARS-CoV-2 virus count in COVID-19 swab/saliva samples by >95% when evaluated by microbubbles (femtomolar concentration) or qPCR, demonstrating both virus trapping and blocking of cellular entry. COVID-19 saliva samples showed low or undetectable ACE2 activity when compared with healthy individuals (2,582 versus 50,126 ΔRFU; 27 versus 225 enzyme units), confirming greater susceptibility of infected patients for viral entry. CTB-ACE2 activity was completely inhibited by pre-incubation with SARS-CoV-2 receptor-binding domain, offering an explanation for reduced saliva ACE2 activity among COVID-19 patients. Chewing gum with virus-trapping proteins offers a general affordable strategy to protect patients from most oral virus re-infections through debulking or minimizing transmission to others.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Animais , Goma de Mascar , Cricetinae , Cricetulus , Procedimentos Cirúrgicos de Citorredução , Humanos , Ligação Proteica , SARS-CoV-2 , Saliva/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
5.
Plant Physiol Biochem ; 169: 81-91, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34773805

RESUMO

Ethylene is a major plant hormone that regulates plant growth, development, and defense responses to biotic and abiotic stresses. The major pieces of the ethylene signaling pathway have been put together, although several details still need to be elucidated. For instance, the phosphorylation and dephosphorylation processes controlling the ethylene responses are poorly understood and need to be further explored. The type 2A protein phosphatase (PP2A) was suggested to play an important role in the regulation of ethylene biosynthesis, where the A1 subunit of PP2A was shown to be involved in the regulation of the rate-limiting enzyme of the ethylene biosynthetic pathway. However, whether other subunits of PP2A play roles in the ethylene signal transduction pathway is yet to be answered. In this study, we demonstrate that a B subunit, PP2A-B'ζ, positively regulates plant germination and seedling development, as a pp2a-b'ζ mutant is very sensitive to ethylene treatment. Furthermore, PP2A-B'ζ interacts with and stabilizes the kinase CTR1 (Constitutive Triple Response 1), a key enzyme in the ethylene signal transduction pathway, and like CTR1, PP2A-B'ζ negatively regulates ethylene signaling in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos , Fosforilação , Reguladores de Crescimento de Plantas , Proteína Fosfatase 2/metabolismo
6.
Plant Biotechnol J ; 19(3): 462-476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32902115

RESUMO

Abiotic stresses such as extreme temperatures, water-deficit and salinity negatively affect plant growth and development, and cause significant yield losses. It was previously shown that co-overexpression of the Arabidopsis vacuolar pyrophosphatase gene AVP1 and the rice SUMO E3 ligase gene OsSIZ1 in Arabidopsis significantly increased tolerance to multiple abiotic stresses and led to increased seed yield for plants grown under single or multiple abiotic stress conditions. It was hypothesized that there might be synergistic effects between AVP1 overexpression and OsSIZ1 overexpression, which could lead to substantially increased yields if these two genes are co-overexpressed in real crops. To test this hypothesis, AVP1 and OsSIZ1 were co-overexpressed in cotton, and the impact of OsSIZ1/AVP1 co-overexpression on cotton's performance under normal growth and multiple stress conditions were analysed. It was found that OsSIZ1/AVP1 co-overexpressing plants performed significantly better than AVP1-overexpressing, OsSIZ1-overexpressing and wild-type cotton plants under single, as well as under multiple stress conditions in laboratory and field conditions. Two field studies showed that OsSIZ1/AVP1 co-overexpressing plants produced 133% and 81% more fibre than wild-type cotton in the dryland conditions of West Texas. This research illustrates that co-overexpression of AVP1 and OsSIZ1 is a viable strategy for engineering abiotic stress-tolerant crops and could substantially improve crop yields in low input or marginal environments, providing a solution for food security for countries in arid and semiarid regions of the world.


Assuntos
Proteínas de Arabidopsis , Secas , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Temperatura Alta , Pirofosfatase Inorgânica/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Salinidade , Estresse Fisiológico
7.
Sci Rep ; 9(1): 7642, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113977

RESUMO

Abiotic stresses such as water deficit, salt, and heat are major environmental factors that negatively affect plant growth, development, and productivity. Previous studies showed that overexpression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 increases salt and water deficit stress tolerance and overexpression of the rice SUMO E3 ligase gene OsSIZ1 improves heat and water deficit stress tolerance in transgenic plants. In this report, the effects of co-overexpression of AVP1 and OsSIZ1 in Arabidopsis on abiotic stress tolerance were studied. It was found that AVP1/OsSIZ1 co-overexpressing plants performed significantly better than AVP1-overexpressing plants and OsSIZ1-overexpressing plants, and produced 100% more seed than wild-type plants under single stress or multiple stress conditions. The increased stress tolerance in AVP1/OsSIZ1 co-overexpressing plants was substantially larger than the increased stress tolerance in AVP1-overexpressing plants and OsSIZ1-overexpressing plants under every abiotic stress condition tested. This research provides the proof-of-concept that crop yields might be substantially improved using this approach.


Assuntos
Proteínas de Arabidopsis/genética , Pirofosfatase Inorgânica/genética , Pressão Osmótica , Tolerância ao Sal , Termotolerância , Ubiquitina-Proteína Ligases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Pirofosfatase Inorgânica/metabolismo , Oryza/genética , Transgenes , Ubiquitina-Proteína Ligases/metabolismo
8.
PLoS One ; 13(8): e0201716, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092010

RESUMO

Sumoylation is one of the post translational modifications, which affects cellular processes in plants through conjugation of small ubiquitin like modifier (SUMO) to target substrate proteins. Response to various abiotic environmental stresses is one of the major cellular functions regulated by SUMO conjugation. SIZ1 is a SUMO E3 ligase, facilitating a vital step in the sumoylation pathway. In this report, it is demonstrated that over-expression of the rice gene OsSIZ1 in Arabidopsis leads to increased tolerance to multiple abiotic stresses. For example, OsSIZ1-overexpressing plants exhibited enhanced tolerance to salt, drought, and heat stresses, and generated greater seed yields under a variety of stress conditions. Furthermore, OsSIZ1-overexpressing plants were able to exclude sodium ions more efficiently when grown in saline soils and accumulate higher potassium ions as compared to wild-type plants. Further analysis revealed that OsSIZ1-overexpressing plants expressed higher transcript levels of P5CS, a gene involved in the biosynthesis of proline, under both salt and drought stress conditions. Therefore, proline here is acting as an osmoprotectant to alleviate damages caused by drought and salt stresses. These results demonstrate that the rice gene OsSIZ1 has a great potential to be used for improving crop's tolerance to several abiotic stresses.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Secas , Resposta ao Choque Térmico/genética , Oryza/genética , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Arabidopsis/citologia , Arabidopsis/metabolismo , Clorofila/metabolismo , Citoplasma/metabolismo , Expressão Gênica , Germinação , Pressão Osmótica , Plantas Geneticamente Modificadas , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Sementes/crescimento & desenvolvimento , Sódio/metabolismo
9.
Plant Sci ; 274: 271-283, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080613

RESUMO

Abiotic stresses are major threats to agricultural production. Drought and salinity as two of the major abiotic stresses cause billions of losses in agricultural productivity worldwide each year. Thus, it is imperative to make crops more tolerant. Overexpression of AVP1 or PP2A-C5 was previously shown to increase drought and salt stress tolerance, respectively, in transgenic plants. In this study, the hypothesis that co-overexpression of AVP1 and PP2A-C5 would combine their respective benefits and further improve salt tolerance was tested. The two genes were inserted into the same T-DNA region of the binary vector and then introduced into the Arabidopsis genome through Agrobacterium-mediated transformation. Transgenic Arabidopsis plants expressing both AVP1 and PP2A-C5 at relatively high levels were identified and analyzed. These plants displayed enhanced tolerance to NaCl compared to either AVP1 or PP2A-C5 overexpressing plants. They also showed tolerance to other stresses such as KNO3 and LiCl at harmful concentrations, drought, and phosphorus deficiency at comparable levels with either AVP1 or PP2A-C5 overexpressing plants. This study demonstrates that introducing multiple genes in single T-DNA region is an effective approach to create transgenic plants with enhanced tolerance to multiple stresses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Pirofosfatase Inorgânica/metabolismo , Proteína Fosfatase 2/metabolismo , Estresse Fisiológico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Secas , Expressão Gênica , Pirofosfatase Inorgânica/genética , Mutagênese Insercional , Fósforo/deficiência , Plantas Geneticamente Modificadas , Proteína Fosfatase 2/genética , Salinidade , Tolerância ao Sal , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Cloreto de Sódio/farmacologia
10.
Sci Rep ; 8(1): 2538, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416081

RESUMO

Drought is the No. 1 factor that limits agricultural production in the world, thus, making crops more drought tolerant is a major goal in agriculture. Many genes with functions in abiotic stress tolerance were identified, and overexpression of these genes confers increased drought tolerance in transgenic plants. The isopentenyltransferase gene (IPT) that encodes a rate limiting enzyme in cytokinin biosynthesis is one of them. Interestingly, when IPT-transgenic cotton was field-tested at two different sites, Texas and Arizona, different results were obtained. To explain this phenomenon, reduced irrigation experiments with different timing in applying water deficit stress were conducted. It was found that the timing of water deficit stress is critical for IPT-transgenic cotton to display its yield advantage over control plants (i.e. wild-type and segregated non-transgenic plants). If water deficit stress occurs before flowering (vegetative phase), IPT-transgenic cotton would outperform control plants; however, if water deficit stress occurs at or after flowering (reproductive phase), there would not be a yield difference between IPT-transgenic and control cotton plants. This result suggests that an early induction of IPT expression (before first flowering) is needed in order to realize the benefits of IPT-expression in transgenic plants that face water-deficit stress later in development.


Assuntos
Alquil e Aril Transferases , Produtos Agrícolas , Secas , Regulação da Expressão Gênica de Plantas , Gossypium , Plantas Geneticamente Modificadas , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arizona , Produção Agrícola , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Osmorregulação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Texas
11.
Pharmacogn Mag ; 13(Suppl 3): S519-S524, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29142408

RESUMO

Purification and characterization of polyphenol oxidase (PPO) enzyme and determination of total phenolic contents during dormancy and sprouting stages in Crocus sativus corms were performed. PPO enzyme was purified by ammonium sulfate precipitation and ion-exchange chromatography using DEAE-Sephadex A25 and two isoenzymes were obtained on the SDS-PAGE, which corresponded to molecular weights of 70 and 54 kDa. The Km values of the enzyme were 4.87 and 2.12 mM for l-DOPA in dormancy and waking stages, respectively. Also, enzyme showed higher Vmax values of 0.026 (ΔOD.min-1) in dormancy compared with the value of 0.019 (ΔOD.min-1) in waking corms. Results showed an inverse correlation between phenolic contents and PPO activity. Accordingly, it can be concluded that as plant progressed through sprouting stage, in contrast to polyphenol oxidase activity, there was a significant increase in total amount of phenolic compounds, as determined by Folin-Ciocalteu method and water and aqueous ethanol extractions. SUMMARY: Purification of polyphenol oxidase enzyme using DEAE-Sephadex A25 in Crocus sativus corms.Characterization of polyphenol oxidase enzyme.Comparison of PPO enzyme characteristics in two different physiologic stages of dormancy and sprouting.Determination of phenolic contents.Correlation between phenolic contents and PPO activity during sprouting and dormancy. Abbreviations used: PPO: Polyphenol Oxidase, DEAE-Sephadex: Diethylaminoethyl Sephadex, SDS-PAGE: Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis, DOPA: Dihydroxyphenylalanine, PEG: Polyethylene Glycol.

12.
Sci Rep ; 7(1): 14757, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116159

RESUMO

Manipulation of a single abiotic stress-related gene could improve plant performance under abiotic stress conditions. To simultaneously increase plant tolerance to multiple stresses, it is usually required to overexpress two (or more) genes in transgenic plants. The common strategy is to assemble two or more expression cassettes, where each gene has its own promoter and terminator, within the same T-DNA. Does the arrangement of the two expression cassettes affect expression of the two transgenes? Can we use the Drosophila gypsy insulator sequence to increase the expression of the two transgenes? Answers to these questions would contribute to design better transformation vectors to maximize the effects of multi-gene transformation. Two Arabidopsis genes, PP2A-C5 and AVP1, and the gypsy insulator sequence were used to construct six transformation vectors with or without the gypsy insulator bracketing the two expression cassettes: uni-directional transcription, divergent transcription, and convergent transcription. Total RNAs were isolated for reverse transcription- quantitative real-time polymerase chain reaction (RT-qPCR) assays and a thorough statistical analysis was conducted for the RT-qPCR data. The results showed that the gypsy insulator does promote the expression of two transgenes in transgenic plants. Besides, the plants containing the divergent transcription cassettes tend to have more correlated expression of both genes.


Assuntos
Arabidopsis/genética , Proteínas de Drosophila/genética , Genes de Plantas , Plantas Geneticamente Modificadas/genética , RNA Mensageiro/genética , Transcrição Gênica , Transgenes , Vetores Genéticos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Plant Cell Physiol ; 58(4): 735-746, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340002

RESUMO

The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and it plays a critical role in abiotic stress responses. To test the possibility that the SUMO E3 ligase could be used to engineer drought- and heat-tolerant crops, the rice gene OsSIZ1 was overexpressed in cotton. We report here that overexpression of OsSIZ1 in cotton results in higher net photosynthesis and better growth than wild-type cotton under drought and thermal stresses in growth chamber and greenhouse conditions. Additionally, this tolerance to abiotic stresses was correlated with higher fiber yield in both controlled-environment and field trials carried out under reduced irrigation and rainfed conditions. These results suggest that OsSIZ1 is a viable candidate gene to improve crop yields under water-limited and rainfed agricultural production systems.


Assuntos
Secas , Gossypium/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/genética , Irrigação Agrícola , Dióxido de Carbono/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Fotossíntese , Plantas Geneticamente Modificadas , Chuva , Texas , Termotolerância/genética
14.
Int J Mol Sci ; 17(10)2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27739413

RESUMO

Hybrid vigor contributes in a large way to the yield and quality of cotton (Gossypium hirsutum) fiber. Although microRNAs play essential regulatory roles in flower induction and development, it is still unclear if microRNAs are involved in male sterility, as the regulatory molecular mechanisms of male sterility in cotton need to be better defined. In this study, two independent small RNA libraries were constructed and sequenced from the young buds collected from the sporogenous cell formation to the meiosis stage of the male sterile line Yu98-8A and the near-isogenic line. Sequencing revealed 1588 and 1536 known microRNAs and 347 and 351 novel miRNAs from male sterile and male fertile libraries, respectively. MicroRNA expression profiles revealed that 49 conserved and 51 novel miRNAs were differentially expressed. Bioinformatic and degradome analysis indicated the regulatory complexity of microRNAs during flower induction and development. Further RT-qPCR and physiological analysis indicated that, among the different Kyoto Encyclopedia Gene and Genomes pathways, indole-3-acetic acid and gibberellic acid signaling transduction pathways may play pivotal regulatory functions in male sterility.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Gossypium/crescimento & desenvolvimento , Gossypium/genética , MicroRNAs/metabolismo , Sequência de Bases , Ensaio de Imunoadsorção Enzimática , Genes de Plantas/genética , Ácidos Indolacéticos/análise , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de RNA , Transcriptoma
15.
Iran J Pharm Res ; 12(1): 31-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250569

RESUMO

More than 30 mineral elements have been found with different key functions in helping plants and animals to survive and live healthy. As a direct result, they have always attracted the attention of scientists. The quest is to find some efficient analytical and quantitative procedures in this study to determine some mineral and trace elements of Iranian Crocus sativus L. corms. Several studies have been made using distinct methods and eventually, to achieve this purpose, three analytical methods were used as follows: Neutron Activation Analysis (NAA), Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Atomic Absorption Spectrophotometry (AAS). Seventeen mineral and trace elements (Mg, Na, Ca, K, Mn, Zn, Cu, Pb, Hg, Ni, Fe, Co, Cd, Sr, Rb, Sc, and Br) were determined in Crocus sativus L. corms in two different physiological stages. The mineral elements content in saffron corms showed a wide variability and their concentrations in dormancy stage were higher than waking. Despite of the fact that K concentration was the highest among all mineral elements studied in both samples, it was nil for Sc, Co, Hg, Pb and Cd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA