Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(37): 15091-15102, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516091

RESUMO

The incredible potential for fluorescent proteins to revolutionize biology has inspired the development of a variety of design strategies to address an equally broad range of photophysical characteristics, depending on potential applications. Of these, fluorescent proteins that simultaneously exhibit high quantum yield, red-shifted emission, and wide separation between excitation and emission wavelengths (Large Stokes Shift, LSS) are rare. The pursuit of LSS systems has led to the formation of a complex, obtained from the marriage of a rationally engineered protein (human cellular retinol binding protein II, hCRBPII) and different fluorogenic molecules, capable of supporting photobase activity. The large increase in basicity upon photoexcitation leads to protonation of the fluorophore in the excited state, dramatically red-shifting its emission, leading to an LSS protein/fluorophore complex. Essential for selective photobase activity is the intimate involvement of the target protein structure and sequence that enables Excited State Proton Transfer (ESPT). The potential power and usefulness of the strategy was demonstrated in live cell imaging of human cell lines.


Assuntos
Proteínas Luminescentes/química , Engenharia de Proteínas , Ácido Glutâmico/química , Células HeLa , Humanos , Processos Fotoquímicos
2.
J Am Chem Soc ; 141(43): 17125-17132, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31557439

RESUMO

Protein conformational switches or allosteric proteins play a key role in the regulation of many essential biological pathways. Nonetheless, the implementation of protein conformational switches in protein design applications has proven challenging, with only a few known examples that are not derivatives of naturally occurring allosteric systems. We have discovered that the domain-swapped (DS) dimer of hCRBPII undergoes a large and robust conformational change upon retinal binding, making it a potentially powerful template for the design of protein conformational switches. Atomic resolution structures of the apo- and holo-forms illuminate a simple, mechanical movement involving sterically driven torsion angle flipping of two residues that drive the motion. We further demonstrate that the conformational "readout" can be altered by addition of cross-domain disulfide bonds, also visualized at atomic resolution. Finally, as a proof of principle, we have created an allosteric metal binding site in the DS dimer, where ligand binding results in a reversible 5-fold loss of metal binding affinity. The high resolution structure of the metal-bound variant illustrates a well-formed metal binding site at the interface of the two domains of the DS dimer and confirms the design strategy for allosteric regulation.


Assuntos
Engenharia de Proteínas/métodos , Proteínas Celulares de Ligação ao Retinol/química , Proteínas Celulares de Ligação ao Retinol/metabolismo , Regulação Alostérica , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Dissulfetos/química , Ligantes , Metais/metabolismo , Modelos Moleculares , Mutação , Domínios Proteicos , Multimerização Proteica , Proteínas Celulares de Ligação ao Retinol/genética , Treonina/genética , Tirosina/genética , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA