Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38329848

RESUMO

OBJECTIVE: To study the suitability of costsensitive ordinal artificial intelligence-machine learning (AIML) strategies in the prognosis of SARS-CoV-2 pneumonia severity. MATERIALS & METHODS: Observational, retrospective, longitudinal, cohort study in 4 hospitals in Spain. Information regarding demographic and clinical status was supplemented by socioeconomic data and air pollution exposures. We proposed AI-ML algorithms for ordinal classification via ordinal decomposition and for cost-sensitive learning via resampling techniques. For performance-based model selection, we defined a custom score including per-class sensitivities and asymmetric misprognosis costs. 260 distinct AI-ML models were evaluated via 10 repetitions of 5×5 nested cross-validation with hyperparameter tuning. Model selection was followed by the calibration of predicted probabilities. Final overall performance was compared against five well-established clinical severity scores and against a 'standard' (non-cost sensitive, non-ordinal) AI-ML baseline. In our best model, we also evaluated its explainability with respect to each of the input variables. RESULTS: The study enrolled n = 1548 patients: 712 experienced low, 238 medium, and 598 high clinical severity. d = 131 variables were collected, becoming d ' = 148 features after categorical encoding. Model selection resulted in our best-performing AI-ML pipeline having: a) no imputation of missing data, b) no feature selection (i.e. using the full set of d ' features), c) 'Ordered Partitions' ordinal decomposition, d) cost-based reimbalance, and e) a Histogram-based Gradient Boosting classifier. This best model (calibrated) obtained a median accuracy of 68.1% [67.3%, 68.8%] (95% confidence interval), a balanced accuracy of 57.0% [55.6%, 57.9%], and an overall area under the curve (AUC) 0.802 [0.795, 0.808]. In our dataset, it outperformed all five clinical severity scores and the 'standard' AI-ML baseline. DISCUSSION & CONCLUSION: We conducted an exhaustive exploration of AI-ML methods designed for both ordinal and cost-sensitive classification, motivated by a real-world application domain (clinical severity prognosis) in which these topics arise naturally. Our model with the best classification performance exploited successfully the ordering information of ground truth classes, coping with imbalance and asymmetric costs. However, these ordinal and cost-sensitive aspects are seldom explored in the literature.

2.
PLoS One ; 18(4): e0284150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053151

RESUMO

With the COVID-19 pandemic having caused unprecedented numbers of infections and deaths, large research efforts have been undertaken to increase our understanding of the disease and the factors which determine diverse clinical evolutions. Here we focused on a fully data-driven exploration regarding which factors (clinical or otherwise) were most informative for SARS-CoV-2 pneumonia severity prediction via machine learning (ML). In particular, feature selection techniques (FS), designed to reduce the dimensionality of data, allowed us to characterize which of our variables were the most useful for ML prognosis. We conducted a multi-centre clinical study, enrolling n = 1548 patients hospitalized due to SARS-CoV-2 pneumonia: where 792, 238, and 598 patients experienced low, medium and high-severity evolutions, respectively. Up to 106 patient-specific clinical variables were collected at admission, although 14 of them had to be discarded for containing ⩾60% missing values. Alongside 7 socioeconomic attributes and 32 exposures to air pollution (chronic and acute), these became d = 148 features after variable encoding. We addressed this ordinal classification problem both as a ML classification and regression task. Two imputation techniques for missing data were explored, along with a total of 166 unique FS algorithm configurations: 46 filters, 100 wrappers and 20 embeddeds. Of these, 21 setups achieved satisfactory bootstrap stability (⩾0.70) with reasonable computation times: 16 filters, 2 wrappers, and 3 embeddeds. The subsets of features selected by each technique showed modest Jaccard similarities across them. However, they consistently pointed out the importance of certain explanatory variables. Namely: patient's C-reactive protein (CRP), pneumonia severity index (PSI), respiratory rate (RR) and oxygen levels -saturation Sp O2, quotients Sp O2/RR and arterial Sat O2/Fi O2-, the neutrophil-to-lymphocyte ratio (NLR) -to certain extent, also neutrophil and lymphocyte counts separately-, lactate dehydrogenase (LDH), and procalcitonin (PCT) levels in blood. A remarkable agreement has been found a posteriori between our strategy and independent clinical research works investigating risk factors for COVID-19 severity. Hence, these findings stress the suitability of this type of fully data-driven approaches for knowledge extraction, as a complementary to clinical perspectives.


Assuntos
COVID-19 , Pneumonia , Humanos , SARS-CoV-2 , Pandemias , Prognóstico , Estudos Retrospectivos
3.
Metabolites ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36557244

RESUMO

After SARS-CoV-2 infection, the molecular phenoreversion of the immunological response and its associated metabolic dysregulation are required for a full recovery of the patient. This process is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic evolution and the vaccination status of the population. We have here investigated the natural history of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phenoreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized recovered patients that self-reported having passed the disease (n = 513). Non-hospitalized recovered patients do not show any metabolic fingerprint associated with the disease or immune alterations. Acute patients are characterized by the metabolic and lipidomic dysregulation that accompanies the exacerbated immunological response, resulting in a slow recovery time with a maximum probability of around 62 days. As a manifestation of the heterogeneity in the metabolic phenoreversion, age and severity become factors that modulate their normalization time which, in turn, correlates with changes in the atherogenesis-associated chemokine MCP-1. Our results are consistent with a model where the slow metabolic normalization in acute patients results in enhanced atherosclerotic risk, in line with the recent observation of an elevated number of cardiovascular episodes found in post-COVID-19 cohorts.

4.
Int J Infect Dis ; 115: 39-47, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34800689

RESUMO

OBJECTIVE: To analyse differences in clinical presentation and outcome between bacteraemic pneumococcal community-acquired pneumonia (B-PCAP) and sSvere Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pneumonia. METHODS: This observational multi-centre study was conducted on patients hospitalized with B-PCAP between 2000 and 2020 and SARS-CoV-2 pneumonia in 2020. Thirty-day survival, predictors of mortality, and intensive care unit (ICU) admission were compared. RESULTS: In total, 663 patients with B-PCAP and 1561 patients with SARS-CoV-2 pneumonia were included in this study. Patients with B-PCAP had more severe disease, a higher ICU admission rate and more complications. Patients with SARS-CoV-2 pneumonia had higher in-hospital mortality (10.8% vs 6.8%; P=0.004). Among patients admitted to the ICU, the need for invasive mechanical ventilation (69.7% vs 36.2%; P<0.001) and mortality were higher in patients with SARS-CoV-2 pneumonia. In patients with B-PCAP, the predictive model found associations between mortality and systemic complications (hyponatraemia, septic shock and neurological complications), lower respiratory reserve and tachypnoea; chest pain and purulent sputum were protective factors in these patients. In patients with SARS-CoV-2 pneumonia, mortality was associated with previous liver and cardiac disease, advanced age, altered mental status, tachypnoea, hypoxaemia, bilateral involvement, pleural effusion, septic shock, neutrophilia and high blood urea nitrogen; in contrast, ≥7 days of symptoms was a protective factor in these patients. In-hospital mortality occurred earlier in patients with B-PCAP. CONCLUSIONS: Although B-PCAP was associated with more severe disease and a higher ICU admission rate, the mortality rate was higher for SARS-CoV-2 pneumonia and deaths occurred later. New prognostic scales and more effective treatments are needed for patients with SARS-CoV-2 pneumonia.


Assuntos
COVID-19 , Pneumonia Pneumocócica , Humanos , Unidades de Terapia Intensiva , Pneumonia Pneumocócica/complicações , Respiração Artificial , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA