Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2402215, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011811

RESUMO

Durable and conductive interfaces that enable chronic and high-resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long-term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)-b-poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface-initiated atom-transfer radical polymerization (SI-ATRP) is described. This "block-brush" provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge-discharge voltage sweeps on a multiarray neural electrode. In addition, the block-brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application.

2.
ACS Appl Mater Interfaces ; 15(31): 38143-38153, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499172

RESUMO

For a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) film employed in a device stack, charge must pass through both the bulk of the film and interfaces between adjacent layers. Thus, charge transport is governed by both bulk and contact resistances. However, for ultrathin films (e.g., flexible devices, thin-film transistors, printed electronics, solar cells), interfacial properties can dominate over the bulk properties, making contact resistance a significant determinant of device performance. For most device applications, the bulk conductivity of PEDOT:PSS is typically improved by blending additives into the solid film. Doping PEDOT:PSS with secondary dopants (e.g., polar small molecules), in particular, increases the bulk conductivity by inducing a more favorable solid morphology. However, the effects of these morphological changes on the contact resistance (which play a bigger role at smaller length scales) are relatively unstudied. In this work, we use transfer length method (TLM) measurements to decouple the bulk resistance from the contact resistance of PEDOT:PSS films incorporating several common additives. These additives include secondary dopants, a silane crosslinker (typically used to stabilize the PEDOT:PSS film), and multi-walled carbon nanotubes (conductive fillers). Using conductive atomic force microscopy, Kelvin probe force microscopy, Raman spectroscopy, and photoelectron spectroscopy, we connect changes in the contact resistance to changes in the surface morphology and energetics as governed by the blended additives. We find that the contact resistance at the PEDOT:PSS/silver interface can be reduced by (1) increasing the ratio of PEDOT to PSS chains, (2) decreasing the work function, (3) decreasing the benzoid-to-quinoid ratio at the surface of the solid film, (4) increasing the film uniformity and contact area, and (5) increasing the phase-segregated morphology of the solid film.

3.
Adv Mater ; 35(12): e2207798, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36634339

RESUMO

Conventional processes for depositing thin films of conjugated polymers are restricted to those based on vapor, liquid, and solution-phase precursors. Each of these methods bear some limitations. For example, low-bandgap polymers with alternating donor-acceptor structures cannot be deposited from the vapor phase, and solution-phase deposition is always subject to issues related to the incompatibility of the substrate with the solvent. Here, a technique to enable deposition of large-area, ultra-thin films (≈20 nm or more), which are transferred from the surface of water, is demonstrated. From the water, these pre-solidified films can then be transferred to a desired substrate, circumventing limitations such as solvent orthogonality. The quality of these films is characterized by a variety of imaging and electrochemical measurements. Mechanical toughness is identified as a limiting property of polymer compatibility, along with some strategies to address this limitation. As a demonstration, the films are used as the hole-transport layer in perovskite solar cells, in which their performance is shown to be comparable to controls formed by spin-coating.

4.
Nanoscale ; 12(20): 11209-11221, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32409812

RESUMO

The purpose of this work is to clarify the mechanism of piezoresistance in a class of ultra-sensitive strain gauges based on metallic films on 2D substrates ("2D/M" films). The metals used are gold or palladium deposited as ultrathin films (≤16 nm). These films transition from a regime of subcontiguous growth to a percolated morphology with increasing nominal thickness. The 2D substrates are either single-layer graphene or hexagonal boron nitride (hBN). By using either a conductor (graphene) or an insulator (hBN), it is possible to de-couple the relative contributions of the metal and the 2D substrate from the overall piezoresistance of the composite structure. Here, we use a combination of measurements including electron microscopy, automated image analysis, temperature-dependent conductivity, and measurements of gauge factor of the films as they are bent over a 1 µm step edge (0.0001% or 1 ppm). Our observations are enumerated as follows: (1) of the four permutations of metal and 2D substrate, all combinations except hBN/Au are able to resolve 1 ppm strain (considered extraordinary for strain gauges) at some threshold thickness of metal; (2) for non-contiguous (i.e., unpercolated) films of metal on hBN, changes in resistance for these small step strains cannot be detected; (3) for percolated films on hBN, changes in resistance upon strain can be resolved only for palladium and not for gold; (4) graphene does not exhibit detectable changes in resistance when subjected to step strains of either 1 or 10 ppm, but does so upon the deposition of any amount of gold or palladium, even for nominal thicknesses below the threshold for percolation. Our observations reveal unexpected complexity in the properties of these simple composite materials, and ways in which these materials might be combined to exhibit even greater sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA