Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Autophagy ; : 1-12, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38566318

RESUMO

HIV-1 entry into CD4+ T lymphocytes relies on the viral and cellular membranes' fusion, leading to viral capsid delivery in the target cell cytoplasm. Atg8/LC3B conjugation to lipids, process named Atg8ylation mainly studied in the context of macroautophagy/autophagy, occurs transiently in the early stages of HIV-1 replication in CD4+ T lymphocytes. Despite numerous studies investigating the HIV-1-autophagy interplays, the Atg8ylation impact in these early stages of infection remains unknown. Here we found that HIV-1 exposure leads to the rapid LC3B enrichment toward the target cell plasma membrane, in close proximity with the incoming viral particles. Furthermore, we demonstrated that Atg8ylation is a key event facilitating HIV-1 entry in target CD4+ T cells. Interestingly, this effect is independent of canonical autophagy as ATG13 silencing does not prevent HIV-1 entry. Together, our results provide an unconventional role of LC3B conjugation subverted by HIV-1 to achieve a critical step of its replication cycle.Abbreviations: BafA1: bafilomycin A1; BlaM: beta-lactamase; CD4+ TL: CD4+ T lymphocytes; PtdIns3K-BECN1 complex: BECN1-containing class III phosphatidylinositol 3-kinase complex; Env: HIV-1 envelope glycoproteins; HIV-1: type 1 human immunodeficiency virus; PM: plasma membrane; PtdIns3P: phosphatidylinositol-3-phosphate; VLP: virus-like particle.

2.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240354

RESUMO

Dendritic cells (DC) are critical cellular mediators of host immunity, notably by expressing a broad panel of pattern recognition receptors. One of those receptors, the C-type lectin receptor DC-SIGN, was previously reported as a regulator of endo/lysosomal targeting through functional connections with the autophagy pathway. Here, we confirmed that DC-SIGN internalization intersects with LC3+ autophagy structures in primary human monocyte-derived dendritic cells (MoDC). DC-SIGN engagement promoted autophagy flux which coincided with the recruitment of ATG-related factors. As such, the autophagy initiation factor ATG9 was found to be associated with DC-SIGN very early upon receptor engagement and required for an optimal DC-SIGN-mediated autophagy flux. The autophagy flux activation upon DC-SIGN engagement was recapitulated using engineered DC-SIGN-expressing epithelial cells in which ATG9 association with the receptor was also confirmed. Finally, Stimulated emission depletion (STED) microscopy performed in primary human MoDC revealed DC-SIGN-dependent submembrane nanoclusters formed with ATG9, which was required to degrade incoming viruses and further limit DC-mediated transmission of HIV-1 infection to CD4+ T lymphocytes. Our study unveils a physical association between the Pattern Recognition Receptor DC-SIGN and essential components of the autophagy pathway contributing to early endocytic events and the host's antiviral immune response.


Assuntos
HIV-1 , Humanos , HIV-1/fisiologia , Antivirais/metabolismo , Células Dendríticas , Lectinas Tipo C/metabolismo , Autofagia
3.
Autophagy ; 19(3): 858-872, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35900944

RESUMO

Although it is admitted that secondary infection can complicate viral diseases, the consequences of viral infection on cell susceptibility to other infections remain underexplored at the cellular level. We though to examine whether the sustained macroautophagy/autophagy associated with measles virus (MeV) infection could help cells oppose invasion by Salmonella Typhimurium, a bacterium sensitive to autophagic restriction. We report here the unexpected finding that Salmonella markedly replicated in MeV-infected cultures due to selective growth within multinucleated cells. Hyper-replicating Salmonella localized outside of LAMP1-positive compartments to an extent that equaled that of the predominantly cytosolic sifA mutant Salmonella. Bacteria were subjected to effective ubiquitination but failed to be targeted by LC3 despite an ongoing productive autophagy. Such a phenotype could not be further aggravated upon silencing of the selective autophagy regulator TBK1 or core autophagy factors ATG5 or ATG7. MeV infection also conditioned primary human epithelial cells for augmented Salmonella replication. The analysis of selective autophagy receptors able to target Salmonella revealed that a lowered expression level of SQSTM1/p62 and TAX1BP1/T6BP autophagy receptors prevented effective anti-Salmonella autophagy in MeV-induced syncytia. Conversely, as SQSTM1/p62 is promoting the cytosolic growth of Shigella flexneri, MeV infection led to reduced Shigella replication. The results indicate that the rarefaction of dedicated autophagy receptors associated with MeV infection differentially affects the outcome of bacterial coinfection depending on the nature of the functional relationship between bacteria and such receptors. Thus, virus-imposed reconfiguration of the autophagy machinery can be instrumental in determining the fate of bacterial coinfection.Abbreviations: ACTB/ß-ACTIN: actin beta; ATG: autophagy related; BAFA1: bafilomycin A1; CFU: colony-forming units; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; FIP: fusion inhibitory peptide; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MOI: multiplicity of infection; OPTN: optineurin; PHH: primary human hepatocyte; SCV: Salmonella-containing vacuoles; SQSTM1/p62: sequestosome 1; S. flexneri: Shigella flexneri; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1/T6BP: Tax1 binding protein 1; TBK1: TANK binding kinase 1.


Assuntos
Autofagia , Coinfecção , Humanos , Autofagia/genética , Proteína Sequestossoma-1/metabolismo , Vírus do Sarampo/metabolismo , Salmonella typhimurium , Proteínas de Transporte
4.
Nat Commun ; 12(1): 4582, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321470

RESUMO

SAMHD1 is a cellular triphosphohydrolase (dNTPase) proposed to inhibit HIV-1 reverse transcription in non-cycling immune cells by limiting the supply of the dNTP substrates. Yet, phosphorylation of T592 downregulates SAMHD1 antiviral activity, but not its dNTPase function, implying that additional mechanisms contribute to viral restriction. Here, we show that SAMHD1 is SUMOylated on residue K595, a modification that relies on the presence of a proximal SUMO-interacting motif (SIM). Loss of K595 SUMOylation suppresses the restriction activity of SAMHD1, even in the context of the constitutively active phospho-ablative T592A mutant but has no impact on dNTP depletion. Conversely, the artificial fusion of SUMO2 to a non-SUMOylatable inactive SAMHD1 variant restores its antiviral function, a phenotype that is reversed by the phosphomimetic T592E mutation. Collectively, our observations clearly establish that lack of T592 phosphorylation cannot fully account for the restriction activity of SAMHD1. We find that SUMOylation of K595 is required to stimulate a dNTPase-independent antiviral activity in non-cycling immune cells, an effect that is antagonized by cyclin/CDK-dependent phosphorylation of T592 in cycling cells.


Assuntos
Ciclo Celular/fisiologia , HIV-1/fisiologia , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Sumoilação/fisiologia , Substituição de Aminoácidos , Células HEK293 , Infecções por HIV/virologia , Humanos , Lisina , Mutação , Fosforilação , Proteína 1 com Domínio SAM e Domínio HD/química , Células U937
5.
Front Microbiol ; 12: 661446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995324

RESUMO

HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.

6.
FASEB J ; 35(2): e21361, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33522017

RESUMO

Bcl-2-associated athanogen-6 (BAG6) is a nucleocytoplasmic shuttling protein involved in protein quality control. We previously demonstrated that BAG6 is essential for autophagy by regulating the intracellular localization of the acetyltransferase EP300, and thus, modifying accessibility to its substrates (TP53 in the nucleus and autophagy-related proteins in the cytoplasm). Here, we investigated BAG6 localization and function in the cytoplasm. First, we demonstrated that BAG6 is localized in the mitochondria. Specifically, BAG6 is expressed in the mitochondrial matrix under basal conditions, and translocates to the outer mitochondrial membrane after mitochondrial depolarization with carbonyl cyanide m-chlorophenyl hydrazine, a mitochondrial uncoupler that induces mitophagy. In SW480 cells, the deletion of BAG6 expression abrogates its ability to induce mitophagy and PINK1 accumulation. On the reverse, its ectopic expression in LoVo colon cancer cells, which do not express endogenous BAG6, reduces the size of the mitochondria, induces mitophagy, leads to the activation of the PINK1/PARKIN pathway and to the phospho-ubiquitination of mitochondrial proteins. Finally, BAG6 contains two LIR (LC3-interacting Region) domains specifically found in receptors for selective autophagy and responsible for the interaction with LC3 and for autophagosome selectivity. Site-directed mutagenesis showed that BAG6 requires wild-type LIRs domains for its ability to stimulate mitophagy. In conclusion, we propose that BAG6 is a novel mitophagy receptor or adaptor that induces PINK1/PARKIN signaling and mitophagy in a LIR-dependent manner.


Assuntos
Mitofagia , Chaperonas Moleculares/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
7.
Autophagy ; 17(9): 2465-2474, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33073673

RESUMO

The immunodeficiency observed in HIV-1-infected patients is mainly due to uninfected bystander CD4+ T lymphocyte cell death. The viral envelope glycoproteins (Env), expressed at the surface of infected cells, play a key role in this process. Env triggers macroautophagy/autophagy, a process necessary for subsequent apoptosis, and the production of reactive oxygen species (ROS) in bystander CD4+ T cells. Here, we demonstrate that Env-induced oxidative stress is responsible for their death by apoptosis. Moreover, we report that peroxisomes, organelles involved in the control of oxidative stress, are targeted by Env-mediated autophagy. Indeed, we observe a selective autophagy-dependent decrease in the expression of peroxisomal proteins, CAT and PEX14, upon Env exposure; the downregulation of either BECN1 or SQSTM1/p62 restores their expression levels. Fluorescence studies allowed us to conclude that Env-mediated autophagy degrades these entire organelles and specifically the mature ones. Together, our results on Env-induced pexophagy provide new clues on HIV-1-induced immunodeficiency.Abbreviations: Ab: antibodies; AF: auranofin; AP: anti-proteases; ART: antiretroviral therapy; BafA1: bafilomycin A1; BECN1: beclin 1; CAT: catalase; CD4: CD4 molecule; CXCR4: C-X-C motif chemokine receptor 4; DHR123: dihydrorhodamine 123; Env: HIV-1 envelope glycoproteins; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GFP-SKL: GFP-serine-lysine-leucine; HEK: human embryonic kidney; HIV-1: type 1 human immunodeficiency virus; HTRF: homogeneous time resolved fluorescence; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NAC: N-acetyl-cysteine; PARP: poly(ADP-ribose) polymerase; PEX: peroxin; ROS: reactive oxygen species; siRNA: small interfering ribonucleic acid; SQSTM1/p62: sequestosome 1.


Assuntos
HIV-1 , Autofagia , Linfócitos T CD4-Positivos , Morte Celular , Humanos , Macroautofagia , Estresse Oxidativo , Linfócitos T
8.
Front Immunol ; 11: 578038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123162

RESUMO

Autophagy is a lysosomal degradation pathway for intracellular components and is highly conserved across eukaryotes. This process is a key player in innate immunity and its activation has anti-microbial effects by directly targeting pathogens and also by regulating innate immune responses. Autophagy dysfunction is often associated with inflammatory diseases. Many studies have shown that it can also play a role in the control of innate immunity by preventing exacerbated inflammation and its harmful effects toward the host. The arms race between hosts and pathogens has led some viruses to evolve strategies that enable them to benefit from autophagy, either by directly hijacking the autophagy pathway for their life cycle, or by using its regulatory functions in innate immunity. The control of viral replication and spread involves the production of anti-viral cytokines. Controlling the signals that lead to production of these cytokines is a perfect way for viruses to escape from innate immune responses and establish successful infection. Published reports related to this last viral strategy have extensively grown in recent years. In this review we describe several links between autophagy and regulation of innate immune responses and we provide an overview of how viruses exploit these links for their own benefit.


Assuntos
Autofagia , Imunidade Inata , Vírus/imunologia , Animais , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/efeitos dos fármacos , Mediadores da Inflamação , Transdução de Sinais , Vírus/efeitos dos fármacos , Vírus/patogenicidade
9.
Biol Cell ; 111(12): 308-318, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31628772

RESUMO

BACKGROUND INFORMATION: Autophagy is induced during HIV-1 entry into CD4 T cells by the fusion of the membranes triggered by the gp41 envelope glycoprotein. This anti-HIV-1 mechanism is inhibited by the viral infectivity factor (Vif) neosynthesized after HIV-1 integration to allow viral replication. However, autophagy is very rapidly controlled after HIV-1 entry by a still unknown mechanism. As HIV-1 viral protein R (Vpr) is the only auxiliary protein found within the virion in substantial amount, we studied its capability to control the early steps of HIV-1 envelope-mediated autophagy. RESULTS: We demonstrated that ectopic Vpr inhibits autophagy in both the Jurkat CD4 T cell line and HEK.293T cells. Interestingly, Vpr coming from the virus also blocks autophagy in CD4 T cells, the main cell target of HIV-1. Furthermore, Vpr decreases the expression level of two essential autophagy proteins (ATG), LC3B and Beclin-1, and an important autophagy-related protein, BNIP3 as well as the level of their mRNA. We also demonstrated in HEK.293T cells that Vpr degrades the FOXO3a transcription factor through the ubiquitin proteasome system. CONCLUSION: Vpr, the only well-expressed HIV-1 auxiliary protein incorporated into viruses, is able to negatively control autophagy induced during HIV-1 entry into CD4 T cells. SIGNIFICANCE: We provide insights of how HIV-1 controls autophagy very early after its entry into CD4 T cells and discovered a new function of Vpr. These results open the route to a better understanding of the roles of Vpr during HIV-1 infection through FOXO3a degradation and could be important to consider additional therapies that counteract the role of Vpr on autophagy.


Assuntos
Autofagia/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1 , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/imunologia , Proteína Beclina-1/imunologia , Linfócitos T CD4-Positivos/citologia , Células HEK293 , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Células Jurkat , Proteínas de Membrana/imunologia , Proteínas Associadas aos Microtúbulos/imunologia , Proteínas Proto-Oncogênicas/imunologia , Proteínas Supressoras de Tumor/imunologia , Replicação Viral
10.
Med Sci (Paris) ; 35(8-9): 635-642, 2019.
Artigo em Francês | MEDLINE | ID: mdl-31532375

RESUMO

Phagocytosis and macroautophagy, named here autophagy, are two essential mechanisms of lysosomal degradation of diverse cargos into membrane structures. Both mechanisms are involved in immune regulation and cell survival. However, phagocytosis triggers degradation of extracellular material whereas autophagy engulfs only cytoplasmic elements. Furthermore, activation and maturation of these two processes are different. LAP (LC3-associated phagocytosis) is a form of phagocytosis that uses components of the autophagy pathway. It can eliminate (i) pathogens, (ii) immune complexes, (iii) threatening neighbouring cells, dead or alive, and (iv) cell debris, such as POS (photoreceptor outer segment) and the midbody released at the end of mitosis. Cells have thus optimized their means of elimination of dangerous components by sharing some fundamental elements coming from the two main lysosomal degradation pathways.


TITLE: La phagocytose associée à LC3 (LAP) - Phagocytose ou autophagie ? ABSTRACT: Phagocytose et macroautophagie, appelée ici autophagie, sont deux mécanismes essentiels de dégradation lysosomale de divers cargos englobés dans des structures membranaires. Ils sont tous deux impliqués dans la régulation du système immunitaire et la survie cellulaire. Cependant, la phagocytose permet l'ingestion de matériel extracellulaire alors que l'autophagie dégrade des composants intra-cytoplasmiques, avec des mécanismes d'activation et de maturation différents. La LAP (LC3-associated phagocytosis) est une forme particulière de phagocytose qui utilise certains éléments de l'autophagie. Elle permet l'élimination de pathogènes, de complexes immuns, de cellules avoisinantes, mortes ou vivantes, constituant un danger pour l'organisme, et de débris cellulaires, tels que les segments externes des photorécepteurs (POS, photoreceptor outer segment), ou la pièce centrale du pont intercellulaire produit en fin de mitose. Les cellules ont ainsi « optimisé ¼ leurs moyens d'éliminer les composés potentiellement dangereux en partageant certains éléments essentiels des deux voies de dégradation lysosomale.


Assuntos
Autofagia/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Fagocitose/fisiologia , Animais , Humanos , Evasão da Resposta Imune/fisiologia , Infecções/imunologia , Infecções/metabolismo , Infecções/patologia , Macrófagos/imunologia , Fagossomos/imunologia
11.
Sci Rep ; 9(1): 5544, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944395

RESUMO

In untreated HIV-1-infected individuals, viremia is positively associated with disease progression. However, some viremic non progressors (VNPs) individuals show paradoxical high CD4+ T cell counts. HIV-1 envelope glycoprotein complex (Env) is a major cytopathic determinant in viral replication; therefore, we have deeply characterized Env function in this rare clinical phenotype. Full-length Env clones isolated from individuals with Viral Load (VL) > 10,000 copies/mL classified as VNPs (n = 15) or rapid progressors (RPs, n = 17) were geno- and phenotypically analyzed by determining diversity, expression, CD4 binding/signaling, fusogenicity, infectivity and autophagy induction. Selected Env clones from VNPs and RPs (n = 32) showed similar expression, fusion and infection abilities. Env clones from both groups showed similar affinity for CD4 during cell-to-cell transmission and consistently induced similar levels of CD4 signaling, measured by α-tubulin acetylation. Moreover, we demonstrate for the first time that primary Env clones from VNP and RP induce autophagy in uninfected cells and that this feature correlated with fusogenic capacity but was unrelated to disease progression. In conclusion, our data suggest that Env clones from VNP individuals are fully functional. Therefore, the paradoxical CD4+ T cell count stability coexisting with high levels of viral replication is unrelated to Env function.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , Viremia/virologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Autofagia/fisiologia , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/virologia , Regulação Viral da Expressão Gênica , Células HEK293 , Infecções por HIV/etiologia , HIV-1/patogenicidade , HIV-1/fisiologia , Humanos , Viremia/etiologia , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
12.
J Biol Chem ; 292(45): 18672-18681, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28928217

RESUMO

Autophagy-related proteins such as Beclin-1 are involved in an array of complex processes, including antiviral responses, and may also modulate the efficiency of gene therapy viral vectors. The Tat-Beclin-1 (TB1) peptide has been reported as an autophagy-inducing factor inhibiting the replication of pathogens such as HIV, type 1 (HIV-1). However, autophagy-related proteins are also essential for the early steps of HIV-1 infection. Therefore, we examined the effects of the Beclin-1 evolutionarily conserved domain in TB1 on viral transduction and autophagy in single-round HIV infection or with nonreplicative HIV-1-derived lentiviral vectors. TB1 enhanced transduction with various pseudotypes but without inducing the autophagy process. TB1 augmented the transduction of human CD34+ hematopoietic stem/progenitor cells while maintaining their capacity to engraft in vivo into humanized mice. TB1 was as effective as other transduction additives and functioned by enhancing the adhesion and fusion of viral particles with target cells but not their aggregation. We also found that the N-terminal L1 loop was critical for TB1 transduction-enhancing activity. Interestingly, the Tat-Beclin-2 (TB2) peptide, derived from the human Beclin-2 protein, was even more potent than TB1 in promoting viral transduction and infection. Taken together, our findings suggest that the TB1 and TB2 peptides enhance the viral entry step. Tat-Beclin peptides therefore represent a new family of viral transduction enhancers for potential use in gene therapy.


Assuntos
Autofagia , Proteína Beclina-1/metabolismo , HIV-1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lentivirus/fisiologia , Internalização do Vírus , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Animais , Proteína Beclina-1/química , Proteína Beclina-1/genética , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Cultivadas , Sequência Conservada , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Transgênicos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Organismos Livres de Patógenos Específicos , Regulação para Cima , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
13.
Med Sci (Paris) ; 33(3): 312-318, 2017 Mar.
Artigo em Francês | MEDLINE | ID: mdl-28367819

RESUMO

One of the main functions of the autophagy pathway is to control infections. Intracellular micro-organisms or their products once internalized in the host cell can be directly degraded by autophagy, a process called xenophagy. Autophagy is also involved in other innate immune responses and participates to the adaptive immune system. In addition, several autophagy proteins play a role in the development of infectious diseases independently of their role in the autophagy pathway. To replicate efficiently, pathogens have therefore evolved to counteract this process or to exploit it to their own profit. The review focuses on the relationship between autophagy and micro-organisms, which is highly diverse and complex. Many research groups are now working on this topic to find new therapeutics and/or vaccines. Given the large number of data, we have addressed this subject through some representative examples.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Autofagia/fisiologia , Doenças Transmissíveis/imunologia , Animais , Doenças Transmissíveis/patologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/fisiologia
14.
Virologie (Montrouge) ; 20(4): 196-206, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32260032

RESUMO

Autophagy is a major catabolic pathway involved in several important cellular functions including homeostasis, development, differentiation and immunity. Consequently, deregulations of this process have been observed in several pathologies. Autophagy leads to the lysosomal degradation of cellular components after their sequestration in vacuoles called autophagosomes. During nutrient starvation, autophagy degrades randomly cytoplasmic components, but it is now well established that this process can be highly selective thanks to proteins that allow the specific targeting of substrates to autophagosomes. These proteins, called autophagy receptors, are able to bind specific substrates and the members of the "ATG8-like" family (divided in two subfamilies: LC3 and GABARAP in mammals), which are decorating autophagosomes. The role of selective autophagy during viral infection is not extensively studied yet. However, the literature shows that viruses have evolved to block, divert or use this process to promote their replication.

16.
Artigo em Inglês | MEDLINE | ID: mdl-26082897

RESUMO

Human Immunodeficiency Virus (HIV) and Mycobacterium tuberculosis (M.tb) are among the most lethal human pathogens worldwide, each being responsible for around 1.5 million deaths annually. Moreover, synergy between acquired immune deficiency syndrome (AIDS) and tuberculosis (TB) has turned HIV/M.tb co-infection into a major public health threat in developing countries. In the past decade, autophagy, a lysosomal catabolic process, has emerged as a major host immune defense mechanism against infectious agents like M.tb and HIV. Nevertheless, in some instances, autophagy machinery appears to be instrumental for HIV infection. Finally, there is mounting evidence that both pathogens deploy various countermeasures to thwart autophagy. This mini-review proposes an overview of the roles and regulations of autophagy in HIV and M.tb infections with an emphasis on microbial factors. We also discuss the role of autophagy manipulation in the context of HIV/M.tb co-infection. In future, a comprehensive understanding of autophagy interaction with these pathogens will be critical for development of autophagy-based prophylactic and therapeutic interventions for AIDS and TB.


Assuntos
Autofagia , Infecções por HIV/imunologia , Tuberculose/imunologia , Humanos
17.
J Virol ; 89(1): 615-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339774

RESUMO

UNLABELLED: Autophagy is a ubiquitous mechanism involved in the lysosomal-mediated degradation of cellular components when they are engulfed in vacuoles called autophagosomes. Autophagy is also recognized as an important regulator of the innate and adaptive immune responses against numerous pathogens, which have, therefore, developed strategies to block or use the autophagy machinery to their own benefit. Upon human immunodeficiency virus type 1 (HIV-1) infection, viral envelope (Env) glycoproteins induce autophagy-dependent apoptosis of uninfected bystander CD4(+) T lymphocytes, a mechanism likely contributing to the loss of CD4(+) T cells. In contrast, in productively infected CD4(+) T cells, HIV-1 is able to block Env-induced autophagy in order to avoid its antiviral effect. To date, nothing is known about how autophagy restricts HIV-1 infection in CD4(+) T lymphocytes. Here, we report that autophagy selectively degrades the HIV-1 transactivator Tat, a protein essential for viral transcription and virion production. We demonstrated that this selective autophagy-mediated degradation of Tat relies on its ubiquitin-independent interaction with the p62/SQSTM1 adaptor. Taken together, our results provide evidence that the anti-HIV effect of autophagy is specifically due to the degradation of the viral transactivator Tat but that this process is rapidly counteracted by the virus to favor its replication and spread. IMPORTANCE: Autophagy is recognized as one of the most ancient and conserved mechanisms of cellular defense against invading pathogens. Cross talk between HIV-1 and autophagy has been demonstrated depending on the virally challenged cell type, and HIV-1 has evolved strategies to block this process to replicate efficiently. However, the mechanisms by which autophagy restricts HIV-1 infection remain to be elucidated. Here, we report that the HIV-1 transactivator Tat, a protein essential for viral replication, is specifically degraded by autophagy in CD4(+) T lymphocytes. Both Tat present in infected cells and incoming Tat secreted from infected cells are targeted for autophagy degradation through a ubiquitin-independent interaction with the autophagy receptor p62/SQSTM1. This study is the first to demonstrate that selective autophagy can be an antiviral process by degrading a viral transactivator. In addition, the results could help in the design of new therapies against HIV-1 by specifically targeting this mechanism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , HIV-1/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Células Cultivadas , Humanos , Proteína Sequestossoma-1
18.
AIDS ; 29(3): 275-86, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25490467

RESUMO

OBJECTIVE: Autophagy, an important antiviral process triggered during HIV-1 entry by gp41-dependent membrane fusion, is repressed in infected CD4+ T cells by an unknown mechanism. The aim of this study was to identify the role of viral infectivity factor (Vif) in the autophagy blockade. DESIGN/METHODS: To determine the role of Vif in autophagy inhibition, we used cell lines that express CD4 and CXCR4 and primary CD4+ T cells. Pull-down experiments, immunoprecipitation assays and computational analyses were performed to analyze the interaction between Vif and microtubule-associated protein light chain 3B (LC3B), a major autophagy component, in presence or absence of the antiviral host factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G), after HIV-1 infection or ectopic expression of Vif. Autophagy was analyzed after infection by viruses expressing Vif (NL4.3) or not (NL4.3[DELTA]Vif), or after exogenous Vif expression. RESULTS: We demonstrate that the C-terminal part of Vif interacts directly with LC3B, independently of the presence of APOBEC3G.Vif binds to pro-LC3 and autophagy-related protein 4-cleaved LC3 forms, and glycine 120, the amino acid conjugated to phosphatidylethanolamine on autophagosomes, is required. Importantly, we evidence that Vif inhibits autophagy during HIV-1 infection. Indeed, autophagy is detected in target cells infected by NL4.3[DELTA]Vif, but prevented in cells infected by NL4.3. Furthermore, autophagy triggered in NL4.3[DELTA]Vif-infected cells is inhibited when Vif is expressed in trans but is still active when target cells express a mutant of Vif that binds weakly to LC3B. CONCLUSION: Our study unveils that Vif inhibits autophagy independently of its action on APOBEC3G and, therefore, suggest a new function of this viral protein in restricting innate antiviral mechanisms.


Assuntos
Autofagia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , HIV-1/imunologia , HIV-1/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Células Cultivadas , Centrifugação , Humanos , Imunoprecipitação , Ligação Proteica , Mapeamento de Interação de Proteínas
19.
Autophagy ; 8(7): 1098-112, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22647487

RESUMO

Recently we have shown that the mitogen-activated protein kinase (MAPK) MAPK14/p38α is involved in resistance of colon cancer cells to camptothecin-related drugs. Here we further investigated the cellular mechanisms involved in such drug resistance and showed that, in HCT116 human colorectal adenocarcinoma cells in which TP53 was genetically ablated (HCT116-TP53KO), overexpression of constitutively active MAPK14/p38α decreases cell sensitivity to SN-38 (the active metabolite of irinotecan), inhibits cell proliferation and induces survival-autophagy. Since autophagy is known to facilitate cancer cell resistance to chemotherapy and radiation treatment, we then investigated the relationship between MAPK14/p38α, autophagy and resistance to irinotecan. We demonstrated that induction of autophagy by SN38 is dependent on MAPK14/p38α activation. Finally, we showed that inhibition of MAPK14/p38α or autophagy both sensitizes HCT116-TP53KO cells to drug therapy. Our data proved that the two effects are interrelated, since the role of autophagy in drug resistance required the MAPK14/p38α. Our results highlight the existence of a new mechanism of resistance to camptothecin-related drugs: upon SN38 induction, MAPK14/p38α is activated and triggers survival-promoting autophagy to protect tumor cells against the cytotoxic effects of the drug. Colon cancer cells could thus be sensitized to drug therapy by inhibiting either MAPK14/p38 or autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Camptotecina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteína Supressora de Tumor p53/deficiência , Camptotecina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Irinotecano , Proteína Supressora de Tumor p53/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
20.
Front Immunol ; 3: 97, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22586428

RESUMO

Autophagy is an intracellular mechanism whereby pathogens, particularly viruses, are destroyed in autolysosomes after their entry into targets cells. Therefore, to survive and replicate in host cells, viruses have developed multiple strategies to either counteract or exploit this process. The aim of this review is to outline the known relationships between HIV-1 and autophagy in CD4+ T lymphocytes and macrophages, two main HIV-1 cell targets. The differential regulation of autophagy in these two cell-types is highlighted and its potential consequences in terms of viral replication and physiopathology discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA