RESUMO
The biological response to nanomaterials exposure depends on their properties, route of exposure, or model organism. Titanium dioxide nanoparticles (TiO2 NPs) are among the most used nanomaterials; however, concerns related to oxidative stress and metabolic effects resulting from their ingestion are rising. Therefore, in the present work, we addressed the metabolic effects of citrate-coated 45 nm TiO2 NPs combining bioaccumulation, tissue ultrastructure, and proteomics approaches on gilthead seabream, Sparus aurata and Japanese carpet shell, Ruditapes philippinarum. Sparus aurata was exposed through artificially contaminated feeds, while R. philippinarum was exposed using TiO2 NPs-doped microalgae solutions. The accumulation of titanium and TiO2 NPs in fish liver is associated with alterations in hepatic tissue structure, and alteration to the expression of proteins related to lipid and fatty acid metabolism, lipid breakdown for energy, lipid transport, and homeostasis. While cellular structure alterations and the expression of proteins were less affected than in gilthead seabream, atypical gill cilia and microvilli and alterations in metabolic-related proteins were also observed in the bivalve. Overall, the effects of TiO2 NPs exposure through feeding appear to stem from various interactions with cells, involving alterations in key metabolic proteins, and changes in cell membranes, their structures, and organelles. The possible appearance of metabolic disorders and the environmental risks to aquatic organisms posed by TiO2 NPs deserve further study.
Assuntos
Dourada , Titânio , Animais , Titânio/toxicidade , Dourada/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Bivalves/metabolismo , Nanopartículas/toxicidade , Fígado/metabolismo , Fígado/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse OxidativoRESUMO
Seaweeds are recognised as a potential eco-friendly food source. However, some species have shown the capacity to bioaccumulate many substances of diverse nature, such as inorganic nanoparticles (NPs), which may have potentially harmful effects on them. Among these NPs, silver nanoparticles (AgNPs) have been used to enhance the antifungal and antibacterial properties of the final consumer products, such as textiles and food packages. Their potential release into the aquatic environment raises significant concern, increasing the probability of interaction with aquatic biota, such as macroalgae. In this work, we investigated the differences in bioaccumulation, biodistribution, and transformation of NPs as a function of seaweed species. We selected polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) as model NP since they remain colloidally stable in seawater, focusing the study only on single particles and not on aggregates. The study was conducted on two different seaweed species with high commercial interest and value as human food: the red seaweed Palmaria palmata and the green seaweed Ulva fenestrata. Single-particle inductively coupled plasma mass spectroscopy (spICP-MS) analysis showed high and similar bioaccumulation of PVP-AgNPs in both seaweeds, in the range of 109 NPs/g of seaweed. However, electron microscopy with energy-dispersive X-ray analysis demonstrated that their time-dependent distribution and transformation in the algal tissue, mainly dissolution and formation of sulfur-rich corona and/or sulfidation, highly depended on the seaweed type. These results indicate that special attention should be given to the presence and transformation of AgNPs in seaweeds intended for human consumption. Not only the dissolution degree but also the speciation of these NPs could heavily impact their bioaccessibility, bioavailability, biodistribution, and toxicity to humans after ingestion.
Assuntos
Algas Comestíveis , Nanopartículas Metálicas , Povidona , Prata , Poluentes Químicos da Água , Bioacumulação , Algas Comestíveis/química , Algas Comestíveis/metabolismo , Nanopartículas Metálicas/química , Povidona/química , Povidona/metabolismo , Prata/química , Prata/metabolismo , Distribuição Tecidual , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análiseRESUMO
Detection of small plastic particles in environmental water samples has been a topic of increasing interest in recent years. A multitude of techniques, such as variants of Raman spectroscopy, have been employed to facilitate their analysis in such complex sample matrices. However, these studies are often conducted for a limited number of plastic types in matrices with relatively little additional materials. Thus, much remains unknown about what parameters influence the detection limits of Raman spectroscopy for more environmentally relevant samples. To address this, this study utilizes Raman spectroscopy to detect six plastic particle types; 161 and 33 nm polystyrene, < 450 nm and 36 nm poly(ethylene terephthalate), 121 nm polypropylene, and 126 nm polyethylene; spiked into artificial saltwater, artificial freshwater, North Sea, Thames River, and Elbe River water. Overall, factors such as plastic particle properties, water matrix composition, and experimental setup were shown to influence the final limits of detection.
Assuntos
Monitoramento Ambiental , Água Doce , Plásticos , Análise Espectral Raman , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Plásticos/análise , Água Doce/química , Água do Mar/química , Rios/química , Microplásticos/análiseRESUMO
The understanding of microplastic degradation and its effects remains limited due to the absence of accurate analytical techniques for detecting and quantifying micro- and nanoplastics. In this study, we investigated the release of nanoplastics and small microplastics in water from low-density polyethylene (LDPE) greenhouse cover films under simulated sunlight exposure for six months. Our analysis included both new and naturally aged (used) cover films, enabling us to evaluate the impact of natural aging. Additionally, photooxidation effects were assessed by comparing irradiated and non-irradiated conditions. Scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA) confirmed the presence of particles below 1 µm in both irradiated and non-irradiated cover films. NTA revealed a clear effect of natural aging, with used films releasing more particles than new films but no impact of photooxidation, as irradiated and non-irradiated cover films released similar amounts of particles at each time point. Raman spectroscopy demonstrated the lower crystallinity of the released PE nanoplastics compared to the new films. Flow cytometry and total organic carbon data provided evidence of the release of additional material besides PE, and a clear effect of both simulated and natural aging, with photodegradation effects observed only for the new cover films. Finally, our results underscore the importance of studying the aging processes in both new and used plastic products using complementary techniques to assess the environmental fate and safety risks posed by plastics used in agriculture.
RESUMO
A bioaccumulation study in red (Palmaria palmata) and green (Ulva sp.) seaweed has been carried out after exposure to different concentrations of citrate-coated titanium dioxide nanoparticles (5 and 25 nm) for 28 days. The concentration of total titanium and the number and size of accumulated nanoparticles in the seaweeds has been determined throughout the study by inductively coupled plasma mass spectrometry (ICP-MS) and single particle-ICP-MS (SP-ICP-MS), respectively. Ammonia was used as a reaction gas to minimize the effect of the interferences in the 48Ti determination by ICP-MS. Titanium concentrations measured in Ulva sp. were higher than those found in Palmaria palmata for the same exposure conditions. The maximum concentration of titanium (61.96 ± 15.49 µg g-1) was found in Ulva sp. after 28 days of exposure to 1.0 mg L-1 of 5 nm TiO2NPs. The concentration and sizes of TiO2NPs determined by SP-ICP-MS in alkaline seaweed extracts were similar for both seaweeds exposed to 5 and 25 nm TiO2NPs, which indicates that probably the element is accumulated in Ulva sp. mainly as ionic titanium or nanoparticles smaller than the limit of detection in size (27 nm). The implementation of TiO2NPs in Ulva sp. was confirmed by electron microscopy (TEM/STEM) in combination with energy dispersive X-Ray analysis (EDX).
Assuntos
Nanopartículas , Alga Marinha , Ulva , Titânio/química , Espectrometria de Massas/métodos , Bioacumulação , Nanopartículas/químicaRESUMO
The extensive use of nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs), raises concerns about their persistence in ecosystems. Protecting aquatic ecosystems and ensuring healthy and safe aquaculture products requires the assessment of the potential impacts of NPs on organisms. Here, we study the effects of a sublethal concentration of citrate-coated TiO2 NPs of two different primary sizes over time in flatfish turbot, Scophthalmus maximus (Linnaeus, 1758). Bioaccumulation, histology and gene expression were assessed in the liver to address morphophysiological responses to citrate-coated TiO2 NPs. Our analyses demonstrated a variable abundance of lipid droplets (LDs) in hepatocytes dependent on TiO2 NPs size, an increase in turbot exposed to smaller TiO2 NPs and a depletion with larger TiO2 NPs. The expression patterns of genes related to oxidative and immune responses and lipid metabolism (nrf2, nfκb1, and cpt1a) were dependent on the presence of TiO2 NPs and time of exposure supporting the variance in hepatic LDs distribution over time with the different NPs. The citrate coating is proposed as the likely catalyst for such effects. Thus, our findings highlight the need to scrutinize the risks associated with exposure to NPs with distinct properties, such as primary size, coatings, and crystalline forms, in aquatic organisms.
Assuntos
Linguados , Nanopartículas Metálicas , Nanopartículas , Animais , Estresse Oxidativo , Ecossistema , Nanopartículas/toxicidade , Nanopartículas/química , Fígado/metabolismo , Titânio/química , Ácido Cítrico/metabolismo , Ingestão de Alimentos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/químicaRESUMO
Antimony tin oxide (Sb2O5/SnO2) is effective in the absorption of infrared radiation for applications, such as skylights. As a nanoparticle (NP), it can be incorporated into films or sheets providing infrared radiation attenuation while allowing for a transparent final product. The acute toxicity exerted by commercial Sb2O5/SnO2 (ATO) NPs was studied in adults and embryos of zebrafish (Danio rerio). Our results suggest that these NPs do not induce an acute toxicity in zebrafish, either adults or embryos. However, some sub-lethal parameters were altered: heart rate and spontaneous movements. Finally, the possible bioaccumulation of these NPs in the aquacultured marine mussel Mytilus sp. was studied. A quantitative analysis was performed using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The results indicated that, despite being scarce (2.31 × 106 ± 9.05 × 105 NPs/g), there is some accumulation of the ATO NPs in the mussel. In conclusion, commercial ATO NPs seem to be quite innocuous to aquatic organisms; however, the fact that some of the developmental parameters in zebrafish embryos are altered should be considered for further investigation. More in-depth analysis of these NPs transformations in the digestive tract of humans is needed to assess whether their accumulation in mussels presents an actual risk to humans.
RESUMO
Acinetobacter baumannii is the leading bacteria causative of nosocomial infections, with high fatality rates, mostly due to their multi-resistance to antibiotics. The capsular polysaccharide (k-type) is a major virulence factor. Bacteriophages are viruses that specifically infect bacteria and have been used to control drug-resistant bacterial pathogens. In particular, A. baumannii phages can recognize specific capsules, from a diversity of >125 that exist. This high specificity demands the in vivo identification of the most virulent A. baumannii k-types that need to be targeted by phage therapy. Currently, the zebrafish embryo has particularly attained interest for in vivo infection modeling. In this study, an A. baumannii infection was successfully established, through the bath immersion of tail-injured zebrafish embryos, to study the virulence of eight capsule types (K1, K2, K9, K32, K38, K44, K45, and K67). The model revealed itself as capable of discerning the most virulent (K2, K9, K32, and K45), middle (K1, K38, and K67), and the less virulent (K44) strains. Additionally, the infection of the most virulent strains was controlled in vivo resorting to the same technique, with previously identified phages (K2, K9, K32, and K45 phages). Phage treatments were able to increase the average survival from 35.2% to up to 74.1% (K32 strain). All the phages performed equally well. Collectively, the results show the potential of the model to not only evaluate virulence of bacteria such as A. baumannii but also assess novel treatments' effectiveness.
Assuntos
Acinetobacter baumannii , Bacteriófagos , Animais , Peixe-Zebra , Virulência , AntibacterianosRESUMO
The current research deals with the use of single-cell inductively coupled plasma-mass spectrometry (scICP-MS) for the assessment of titanium dioxide nanoparticle (TiO2 NP) and silver nanoparticle (Ag NP) associations in cell lines derived from aquaculture species (sea bass, sea bream, and clams). The optimization studies have considered the avoidance of high dissolved background, multi-cell peak coincidence, and possible spectral interferences. Optimum operating conditions were found when using a dwell time of 50 µs for silver and 100 µs for titanium. The assessment of associated TiO2 NPs by scICP-MS required the use of ammonia as a reaction gas (flow rate at 0.75 mL min-1) for interference-free titanium determinations (measurements at an m/z ratio of 131 from the 48Ti(NH)(NH3)4 adduct). The influence of other parameters such as the number of washing cycles and the cell concentration on accurate determinations by scICP-MS was also fully investigated. Cell exposure trials were performed using PVP-Ag NPs (15 and 100 nm, nominal diameter) and citrate-TiO2 NPs (5, 25, and 45 nm, nominal diameter) at nominal concentrations of 10 and 50 µg mL-1 for citrate-TiO2 NPs and 5.0 and 50 µg mL-1 for PVP-Ag NPs. Results have shown that citrate-TiO2 NPs interact with the outer cell membranes, being quite low in the number of citrate-TiO2 NPs that enters the cells (the high degree of aggregation is the main factor which leads to the aggregates being in the extracellular medium). In contrast, PVP-Ag NPs have been found to enter the cells.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Titânio/química , Nanopartículas Metálicas/química , Prata/química , Nanopartículas/química , Ácido Cítrico , Linhagem Celular , AquiculturaRESUMO
Many researchers have turned their attention to understanding microplastic interaction with marine fauna. Efforts are being made to monitor exposure pathways and concentrations and to assess the impact such interactions may have. To answer these questions, it is important to select appropriate experimental parameters and analytical protocols. This study focuses on medusae of Cassiopea andromeda jellyfish: a unique benthic jellyfish known to favor (sub-)tropical coastal regions which are potentially exposed to plastic waste from land-based sources. Juvenile medusae were exposed to fluorescent poly(ethylene terephthalate) and polypropylene microplastics (<300 µm), resin embedded, and sectioned before analysis with confocal laser scanning microscopy as well as transmission electron microscopy and Raman spectroscopy. Results show that the fluorescent microplastics were stable enough to be detected with the optimized analytical protocol presented and that their observed interaction with medusae occurs in a manner which is likely driven by the microplastic properties (e.g., density and hydrophobicity).
Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Análise Espectral Raman , Fluxo de Trabalho , Microscopia Eletrônica , Monitoramento Ambiental , Poluentes Químicos da Água/análiseRESUMO
Saxitoxin (STX), the most widely distributed neurotoxin in marine waters and emerging cyanotoxin of concern in freshwaters, causes paralytic shellfish poisoning in humans upon consumption of contaminated shellfish. To allow for the efficient monitoring of this biotoxin, it is of high importance to find high-affinity materials for its adsorption. Herein, we report the design and synthesis of a covalent organic polymer for the efficient adsorption of STX. Two ß-keto-enamine-based materials were prepared by self-assembly of 2,4,6-triformylphloroglucinol (Tp) with 2,5-diaminobenzoic acid (Pa-COOH) to give TpPa-COOH and with 2,5-diaminotoluene (Pa-CH3) to give TpPa-CH3. The carboxylic acid functionalized TpPa-COOH outperformed the methyl-bearing counterpart TpPa-CH3 by an order of magnitude despite the higher long-range order and surface area of the latter. The adsorption of STX by TpPa-COOH was fast with equilibrium reached within 1 h, and the Langmuir adsorption model gave a calculated maximum adsorption capacity, Qm, of 5.69 mg g-1, making this material the best reported adsorbent for this toxin. More importantly, the prepared TpPa-COOH also showed good reusability and high recovery rates for STX in natural freshwater, thereby highlighting the material as a good candidate for the extraction and pre-concentration of STX from aquatic environments.
Assuntos
Toxinas Marinhas , Saxitoxina , Humanos , Adsorção , Neurotoxinas/análise , Frutos do Mar/análiseRESUMO
Bacterial colonization and biofilm formation are found on nearly all wet surfaces, representing a serious problem for both human healthcare and industrial applications, where traditional treatments may not be effective. Herein, we describe a synergistic approach for improving the performance of antibacterial surfaces based on microstructured surfaces that embed titanium dioxide nanoparticles (TiO2 NPs). The surfaces were designed to enhance bacteria entrapment, facilitating their subsequent eradication by a combination of UVC disinfection and TiO2 NPs photocatalysis. The efficacy of the engineered TiO2-modified microtopographic surfaces was evaluated using three different designs, and it was found that S2-lozenge and S3-square patterns had a higher concentration of trapped bacteria, with increases of 70 and 76%, respectively, compared to flat surfaces. Importantly, these surfaces showed a significant reduction (99%) of viable bacteria after just 30 min of irradiation with UVC 254 nm light at low intensity, being sixfold more effective than flat surfaces. Overall, our results showed that the synergistic effect of combining microstructured capturing surfaces with the chemical functionality of TiO2 NPs paves the way for developing innovative and efficient antibacterial surfaces with numerous potential applications in the healthcare and biotechnology market.
Assuntos
Aderência Bacteriana , Luz , Humanos , Titânio/farmacologia , Bactérias , Antibacterianos/farmacologiaRESUMO
The link between oxidative stress and environmental factors plays an important role in chronic degenerative diseases; therefore, exogenous antioxidants could be an effective alternative to combat disease progression and/or most significant symptoms. Curcuma longa L. (CL), commonly known as turmeric, is mostly composed of curcumin, a multivalent molecule described as having antioxidant, anti-inflammatory and neuroprotective properties. Poor chemical stability and low oral bioavailability and, consequently, poor absorption, rapid metabolism, and limited tissue distribution are major restrictions to its applicability. The advent of nanotechnology, by combining nanosacale with multi-functionality and bioavailability improvement, offers an opportunity to overcome these limitations. Therefore, in this work, poly-Æ-caprolactone (PCL) nanoparticles were developed to incorporate the methanolic extract of CL, and their bioactivity was assessed in comparison to free or encapsulated curcumin. Their toxicity was evaluated using zebrafish embryos by applying the Fish Embryo Acute Toxicity test, following recommended OECD guidelines. The protective effect against paraquat-induced oxidative damage of CL extract, free or encapsulated in PCL nanoparticles, was evaluated. This herbicide is known to cause oxidative damage and greatly affect neuromotor functions. The overall results indicate that CL-loaded PCL nanoparticles have an interesting protective capacity against paraquat-induced damage, particularly in neuromuscular development that goes well beyond that of CL extract itself and other known antioxidants.
RESUMO
Titanium dioxide (TiO2) and silver (Ag) NPs are among the most used engineered inorganic nanoparticles (NPs); however, their potential effects to marine demersal fish species, are not fully understood. Therefore, this study aimed to assess the proteomic alterations induced by sub-lethal concentrations citrate-coated 25 nm ("P25") TiO2 or polyvinylpyrrolidone (PVP) coated 15 nm Ag NPs to turbot, Scophthalmus maximus. Juvenile fish were exposed to the NPs through daily feeding for 14 days. The tested concentrations were 0, 0.75 or 1.5 mg of each NPs per kg of fish per day. The determination of NPs, Titanium and Ag levels (sp-ICP-MS/ICP-MS) and histological alterations (Transmission Electron Microscopy) supported proteomic analysis performed in the liver and kidney. Proteomic sample preparation procedure (SP3) was followed by LC-MS/MS. Label-free MS quantification methods were employed to assess differences in protein expression. Functional analysis was performed using STRING web-tool. KEGG Gene Ontology suggested terms were discussed and potential biomarkers of exposure were proposed. Overall, data shows that liver accumulated more elements than kidney, presented more histological alterations (lipid droplets counts and size) and proteomic alterations. The Differentially Expressed Proteins (DEPs) were higher in Ag NPs trial. The functional analysis revealed that both NPs caused enrichment of proteins related to generic processes (metabolic pathways). Ag NPs also affected protein synthesis and nucleic acid transcription, among other processes. Proteins related to thyroid hormone transport (Serpina7) and calcium ion binding (FAT2) were suggested as biomarkers of TiO2 NPs in liver. For Ag NPs, in kidney (and at a lower degree in liver) proteins related with metabolic activity, metabolism of exogenous substances and oxidative stress (e.g.: NADH dehydrogenase and Cytochrome P450) were suggested as potential biomarkers. Data suggests adverse effects in turbot after medium/long-term exposures and the need for additional studies to validate specific biological applications of these NPs.
Assuntos
Linguados , Nanopartículas Metálicas , Ácidos Nucleicos , Animais , Cálcio , Cromatografia Líquida , Citratos , Nanopartículas Metálicas/química , NADH Desidrogenase , Povidona/química , Proteômica , Prata/química , Espectrometria de Massas em Tandem , Hormônios Tireóideos , Titânio/químicaRESUMO
Infectious diseases caused by Aeromonas salmonicida (A. salmonicida) have a huge impact and produce significant losses in aquaculture and fish farming. Fish pathogen early detection is a critical step for the rapid identification and prevention of these problems. This work presents a novel portable label-free ultrasensitive electrochemical immunosensor for A. salmonicida detection in seawater. It consists of a fluidic integrated electrochemical-cell-chip (ECC) with independent chambers enclosing three electrochemical cells (ECs). Anti-A. salmonicida (AbSalm) antibodies were covalently attached to the gold surface of the microfabricated electrodes and were used for the sensitive detection of A. salmonicida. The antibody-antigen immunoreaction was studied by enzyme-linked immunosorbent assay (ELISA), and the surface functionalization was characterized by using quartz crystal microbalance (QCM), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The performance of the developed immunosensor, in terms of sensitivity, repeatability, and specificity, was also studied. The linear working range varied between 1 and 107 CFU mL-1, with a limit of detection (LOD) as low as 1 CFU mL-1. The suitability of the immunosensor for real sample detection was successfully demonstrated via recovery studies performed in spiked seawater samples. The proposed technology supports the use of low-cost and portable instrumentation that concedes the ultrasensitive, simple, and fast quantification of the A. salmonicida. To the best of our knowledge, this is the first portable sensing system for the detection of A. salmonicida in seawater samples, which provides a promising online monitoring platform for the detection of this bacterium in aquaculture facilities.
Assuntos
Aeromonas salmonicida , Técnicas Biossensoriais , Animais , Aquicultura , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Imunoensaio/métodos , Limite de Detecção , Água do MarRESUMO
Biosensors have a great impact on our society to enhance the life quality, playing an important role in the development of Point-of-Care (POC) technologies for rapid diagnostics, and monitoring of disease progression. COVID-19 rapid antigen tests, home pregnancy tests, and glucose monitoring sensors represent three examples of successful biosensor POC devices. Biosensors have extensively been used in applications related to the control of diseases, food quality and safety, and environment quality. They can provide great specificity and portability at significantly reduced costs. In this chapter are described the fundamentals of biosensors including the working principles, general configurations, performance factors, and their classifications according to the type of bioreceptors and transducers. It is also briefly illustrated the general strategies applied to immobilize biorecognition elements on the transducer surface for the construction of biosensors. Moreover, the principal detection methods used in biosensors are described, giving special emphasis on optical, electrochemical, and mass-based methods. Finally, the challenges for biosensing in real applications are addressed at the end of this chapter.
Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Biossensoriais/métodos , Glicemia , Automonitorização da Glicemia , COVID-19/diagnóstico , HumanosRESUMO
Background: Yessotoxin (YTX), a marine-derived drug, was encapsulated in PEGylated pH-sensitive nanoliposomes, covalently functionalized (strategy I) with SDF-1α and by nonspecific adsorption (strategy II), to actively target chemokine receptor CXCR-4. Methods: Cytotoxicity to normal human epithelial cells (HK-2) and prostate (PC-3) and breast (MCF-7) adenocarcinoma models, with different expression levels of CXCR-4, were tested. Results: Strategy II exerted the highest cytotoxicity toward cancer cells while protecting normal epithelia. Acid pH-induced fusion of nanoliposomes seemed to serve as a primary route of entry into MCF-7 cells but PC-3 data support an endocytic pathway for their internalization. Conclusion: This work describes an innovative hallmark in the current marine drug clinical pipeline, as the developed nanoliposomes are promising candidates in the design of groundbreaking marine flora-derived anticancer nanoagents.
Assuntos
Neoplasias , Oxocinas , Quimiocina CXCL12/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Masculino , Venenos de Moluscos , Neoplasias/tratamento farmacológico , Receptores CXCR4RESUMO
In this work, a new analytical approach based on ultrasound-assisted dispersive (micro)solid phase extraction (US-D-µSPE) using TpBD-Me2 covalent organic framework (COF) as adsorbent for simple, rapid and selective fluorescent determination of two polycyclic synthetic fragrances in seawater, i.e., 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-(γ)-2-benzopyran (HHCB), branded galaxolide®, and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN), branded tonalide®, is proposed. Different parameters involved in both adsorption and desorption steps were optimized in order to obtain the best results. High adsorption efficiencies in the range of 91.2-97.8% were achieved for both analytes. Desorption efficiencies of â¼98% for AHTN and HHCB were obtained using methanol as solvent, rendering the material recyclable with merely minor losses in adsorption efficiency after five consecutive cycles of adsorption/desorption. Limits of detection (LODs) were 0.082 µg L-1 and 0.070 µg L-1 for AHTN and HHCB, respectively. The proposed method was successfully applied for the analysis of seawater without the need for a previous sample treatment, e.g., pH adjustment. Recoveries in the range of 90.4-101.2% with a relative standard deviation of 5.8% were obtained for both fragrances. The results proved the great capacity of TpBD-Me2 COF for the selective sorption of polycyclic fragrances in combination with fluorescent detection, being highly promising for application to environmental monitoring of other emerging organic pollutants.
Assuntos
Estruturas Metalorgânicas , Perfumes , Poluentes Químicos da Água , Odorantes , Água do Mar , Extração em Fase Sólida , Poluentes Químicos da Água/análiseRESUMO
Protic ionic liquids (PILs) have been widely employed with the label of "green solvents'' in different sectors of technology and industry. The studied PILs are promising for corrosion inhibition and lubrication applications in industry. Industrial use of the PILs can transform them in wastes, due to accidental spill or drag in water due to washing, that can reach water bodies. In addition, the handling of the product by the workers can expose them to accidental contact. Thus, the aim of this work is to evaluate the toxicity of PILs 2-hydroxyethylammonium oleate (2-HEAOl), N-methyl-2-hydroxyethylammonium oleate (m-2HEAOl) and bis-2-hydroxyethylammonium oleate (BHEAOl) towards Escherichia coli, zebrafish embryos, model organisms that can be present in water, and human skin cells. This is the first work reporting toxicity results for these PILs, which constitutes its novelty. Results showed that the studied PILs did not inhibit E. coli bacterial growth but could cause human skin cells death at the concentrations of use. LC50 values for zebrafish eggs were 40.21 mg/L for 2HEAOl, 12.92 mg/L for BHEAOl and 32.74 mg/L for m-2HEAOl, with sublethal effects at lower concentrations, such as hatching retarding, low heart rate and absence of free swimming.
Assuntos
Líquidos Iônicos , Animais , Escherichia coli , Humanos , Líquidos Iônicos/toxicidade , Ácido Oleico , Solventes , Peixe-ZebraRESUMO
Correction for 'A novel microfluidic system for the sensitive and cost-effective detection of okadaic acid in mussels' by Ana Castanheira et al., Analyst, 2021, 146, 2638-2645, DOI: 10.1039/D0AN02092C.