Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Am J Cancer Res ; 12(5): 2173-2188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693067

RESUMO

The HER3/4 ligand heregulin-ß2 (HRG) is a secreted growth factor that transactivates the ligand-less receptor HER2 to promote aggressive phenotypes in breast cancer. HRG can also localize to the nucleus of breast cancer cells, but both the nuclear translocation mechanism and the physiological role of nuclear HRG remain elusive. Here we show that nucleolin-driven nuclear moonlighting of HRG uncouples its role as a driver of endocrine resistance from its canonical HER network-activating role in breast cancer. Tandem affinity purification coupled to mass spectrometry identified the intracellular transporter nucleolin as a major HRG-binding protein. HRG interacts with nucleolin via a nuclear localization signal motif located at the N-terminal extracellular domain of HRG. Nucleolin interacts with HRG via aspartate/glutamate-rich acidic stretches located at the N-terminal domain of nucleolin. Depletion of nucleolin abolishes HRG nuclear translocation and decreases HRG mRNA and protein expression. Isolated deficiency of nuclear HRG abolishes the HRG-driven endocrine resistance phenotype in vitro and in mouse xenograft models, while preserving its capacity to activate the HRG/HER/MAPK autocrine signaling axis. Conversely, isolated deficiency of secreted HRG to bind HER2/3 receptors does not impair endocrine resistance. The discovery that the functions of dual compartment-resident HRG do not depend on the same effector (i.e., activation of HER2/3 receptors) establishes a new paradigm for the functional and therapeutic relevance of nuclear HRG in breast cancer.

2.
Am J Cancer Res ; 12(2): 839-851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261806

RESUMO

Triple-negative/basal-like breast cancer (BC) is characterized by aggressive biological features, which allow relapse and metastatic spread to occur more frequently than in hormone receptor-positive (luminal) subtypes. The molecular complexity of triple-negative/basal-like BC poses major challenges for the implementation of targeted therapies, and chemotherapy remains the standard approach at all stages. The matricellular protein cysteine-rich angiogenic inducer 61 (CCN1/CYR61) is associated with aggressive metastatic phenotypes and poor prognosis in BC, but it is unclear whether anti-CCN1 approaches can be successfully applied in triple-negative/basal-like BC. Herein, we first characterized the prevalence of CNN1 expression in matched samples of primary tumors and metastatic relapse in a series of patients with BC. We then investigated the biological effect of CCN1 depletion on tumorigenic traits in vitro and in vivo using archetypal TNBC cell lines. Immunohistochemical analyses of tissue microarrays revealed a significant increase of the highest CCN1 score in recurrent tissues of triple-negative/basal-like BC tumors. Stable silencing of CCN1 in triple-negative/basal-like BC cells promoted a marked reduction in the expression of the CCN1 integrin receptor αvß3, inhibited anchorage-dependent cell growth, reduced clonogenicity, and impaired migration capacity. In an orthotopic model of triple-negative/basal-like BC, silencing of CCN1 notably reduced tumor burden, which was accompanied by decreased microvessel density and concurrent induction of the luminal epithelial marker E-cadherin. Thus, CNN1/CYR61-targeting strategies might have therapeutic value in suppressing the biological aggressiveness of triple-negative/basal-like BC.

3.
Lipids Health Dis ; 21(1): 22, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172832

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide characterized by disparities in age, gender, race and anatomic sites. The mechanism underlying pathogenesis, progression and disparities of CRC remains unclear. This study aims to reveal the association of expression levels of enzymes related to cholesteryl ester (CE) metabolism with pathogenesis, progression and disparities of CRC. METHODS: The differences in gene expression levels were analyzed for enzymes in CE synthesis (acyl CoA: cholesterol acyltransferase 1 and 2, ACAT1, and ACAT2), and in CE hydrolysis (neutral cholesterol ester hydrolase, NCEH1 and lysosomal acid lipase, LAL) on TNMplot platform between CRC and normal colorectal tissues (NCT) in a large cohort. The differences in protein expression levels for these enzymes were determined by Immunochemistry (IHC) performed on tissue microarray containing 96 pairs of CRC and benign colorectal tissues (BCT) from different patient populations. The expression level represented as IHC score of each enzyme was compared between CRC and BCT in entire population and populations stratified by race, gender and anatomic sites. Student's t-test, Fisher exact test and ANOVA were used for data analysis. Significant p value was set at P<0.05. RESULTS: The gene expression level of ACAT1 was significantly lower in CRC than in NCT (P = 2.15e-119). The gene expression level of ACAT2 was not statistically different between CRC and NCT. The gene expression level of LIPA (encoding LAL) was significantly higher in CRC than in NCT (P = 2.01e-14). No data was found for the gene expression level of NCEH1. The IHC score of ACAT1was significantly lower in CRC than in BCT in all studied populations and in sub site of colon, but not in that of rectum. The IHC score of ACAT2 was not statistically different between CRC and BCT. IHC score of NCEH1 was significantly higher in CRC than in BCT only in African American (AA) population. The IHC score of LAL was significantly higher in CRC than in BCT in all studied populations and in all sub sites. In addition, decreased ACAT1 in CRC significantly correlated to progression of CRC: the lower IHC score of ACAT1, the more advanced clinical stage of CRC will be. CONCLUSIONS: This study revealed that altered expression levels in enzymes related to CE metabolism highly correlate to the pathogenesis, clinical progression and disparities of CRC. The results will add revenue in elucidating mechanisms underlying progression of CRC, and shed light on seeking biomarkers and exploring therapeutic targets for CRC in a new direction.


Assuntos
Ésteres do Colesterol , Neoplasias Colorretais , Ésteres do Colesterol/metabolismo , Neoplasias Colorretais/genética , Humanos , Esterol Esterase/genética , Esterol Esterase/metabolismo , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo
4.
Aging (Albany NY) ; 14(3): 1200-1213, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148282

RESUMO

CCN1/CYR61 promotes angiogenesis, tumor growth and chemoresistance by binding to its integrin receptor αvß3 in endothelial and breast cancer (BC) cells. CCN1 controls also tissue regeneration by engaging its integrin receptor α6ß1 to induce fibroblast senescence. Here, we explored if the ability of CCN1 to drive an endocrine resistance phenotype in estrogen receptor-positive BC cells relies on interactions with either αvß3 or α6ß1. First, we took advantage of site-specific mutagenesis abolishing the CCN1 receptor-binding sites to αvß3 and α6ß1 to determine the integrin partner responsible for CCN1-driven endocrine resistance. Second, we explored a putative nuclear role of CCN1 in regulating ERα-driven transcriptional responses. Retroviral forced expression of a CCN1 derivative with a single amino acid change (D125A) that abrogates binding to αvß3 partially phenocopied the endocrine resistance phenotype induced upon overexpression of wild-type (WT) CCN1. Forced expression of the CCN1 mutant TM, which abrogates all the T1, H1, and H2 binding sites to α6ß1, failed to bypass the estrogen requirement for anchorage-independent growth or to promote resistance to tamoxifen. Wild-type CCN1 promoted estradiol-independent transcriptional activity of ERα and enhanced ERα agonist response to tamoxifen. The α6ß1-binding-defective TM-CCN1 mutant lost the ERα co-activator-like behavior of WT-CCN1. Co-immunoprecipitation assays revealed a direct interaction between endogenous CCN1 and ERα, and in vitro approaches confirmed the ability of recombinant CCN1 to bind ERα. CCN1 signaling via α6ß1, but not via αvß3, drives an endocrine resistance phenotype that involves a direct binding of CCN1 to ERα to regulate its transcriptional activity in ER+ BC cells.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/genética , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Integrina alfa6beta1/metabolismo , Integrinas , Tamoxifeno/farmacologia
5.
Front Biosci (Landmark Ed) ; 26(10): 765-776, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34719204

RESUMO

Background: The major histocompatibility complex class I polypeptide-related sequence A (MICA) is one of the ligands of the natural killer group 2D (NKG2D) activating receptor. MICA stimulates NKG2D, which further triggers activation of natural killer cells and leads to killing of infected target cells. To subvert the biological function of NKG2D, tumor cells utilize an escape strategy by shedding overexpressed MICA. In this study, we determined the levels of MICA in colorectal cancers (CRCs). Additionally, we established correlations between MICA expression and clinical characteristics. Publicly available data and bioinformatics tools were used for validation purposes. Methods: We determined the MICA RNA expression levels and assessed their correlation with clinicopathological parameters in CRC using the UALCAN web-portal. We performed immunohistochemical analysis on tissue microarrays having 192 samples, acquired from 96 CRC patients, to validate the expression of MICA in CRC and adjacent uninvolved tissue and investigated its prognostic significance by Kaplan-Meier and proportional hazards methods. Results: Bioinformatics and immunohistochemical analyses showed that MICA expression was significantly upregulated in CRCs as compared to uninvolved tissue, and the overexpression of MICA was independent of pathologic stage, histotype, nodal metastasis status, p53-status, as well as patient's race, age and gender. Moreover, PROGgeneV2 survival analysis of two cohorts showed a poor prognosis for CRC patients exhibiting high MICA expression. Conclusions: Overall, our findings for CRC patients demonstrate generally high expression of MICA, and suggest that a poor prognosis relates to high MICA expression. These results can be further explored due to their potential to provide clues to the contribution of the tumor microenvironment to the progression of CRC.


Assuntos
Neoplasias Colorretais , Antígenos de Histocompatibilidade Classe I , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias Colorretais/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Células Matadoras Naturais , Peptídeos , Microambiente Tumoral
6.
Cell Death Dis ; 12(11): 977, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675185

RESUMO

Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.


Assuntos
Ácido Graxo Sintases/metabolismo , Mitocôndrias/metabolismo , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Transfecção
7.
Cancers (Basel) ; 13(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800852

RESUMO

The identification of clinically important molecular mechanisms driving endocrine resistance is a priority in estrogen receptor-positive (ER+) breast cancer. Although both genomic and non-genomic cross-talk between the ER and growth factor receptors such as human epidermal growth factor receptor 2 (HER2) has frequently been associated with both experimental and clinical endocrine therapy resistance, combined targeting of ER and HER2 has failed to improve overall survival in endocrine non-responsive disease. Herein, we questioned the role of fatty acid synthase (FASN), a lipogenic enzyme linked to HER2-driven breast cancer aggressiveness, in the development and maintenance of hormone-independent growth and resistance to anti-estrogens in ER/HER2-positive (ER+/HER2+) breast cancer. The stimulatory effects of estradiol on FASN gene promoter activity and protein expression were blunted by anti-estrogens in endocrine-responsive breast cancer cells. Conversely, an AKT/MAPK-related constitutive hyperactivation of FASN gene promoter activity was unaltered in response to estradiol in non-endocrine responsive ER+/HER2+ breast cancer cells, and could be further enhanced by tamoxifen. Pharmacological blockade with structurally and mechanistically unrelated FASN inhibitors fully impeded the strong stimulatory activity of tamoxifen on the soft-agar colony forming capacity-an in vitro metric of tumorigenicity-of ER+/HER2+ breast cancer cells. In vivo treatment with a FASN inhibitor completely prevented the agonistic tumor-promoting activity of tamoxifen and fully restored its estrogen antagonist properties against ER/HER2-positive xenograft tumors in mice. Functional cancer proteomic data from The Cancer Proteome Atlas (TCPA) revealed that the ER+/HER2+ subtype was the highest FASN protein expressor compared to basal-like, HER2-enriched, and ER+/HER2-negative breast cancer groups. FASN is a biological determinant of HER2-driven endocrine resistance in ER+ breast cancer. Next-generation, clinical-grade FASN inhibitors may be therapeutically relevant to countering resistance to tamoxifen in FASN-overexpressing ER+/HER2+ breast carcinomas.

8.
Molecules ; 26(4)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672163

RESUMO

To date very few promising leads from natural products (NP) secondary metabolites with antiviral and immunomodulatory properties have been identified for promising/potential intervention for COVID-19. Using in-silico docking studies and genome based various molecular targets, and their in vitro anti-SARS CoV-2 activities against whole cell and/or selected protein targets, we select a few compounds of interest, which can be used as potential leads to counteract effects of uncontrolled innate immune responses, in particular those related to the cytokine storm. A critical factor for prevention and treatment of SARS-CoV-2 infection relates to factors independent of viral infection or host response. They include population-related variables such as concurrent comorbidities and genetic factors critically relevant to COVID-19 health disparities. We discuss population risk factors related to SARS-CoV-2. In addition, we focus on virulence related to glucose-6-phosphate dehydrogenase deficiency (G6PDd), the most common human enzymopathy. Review of data on the response of individuals and communities with high prevalence of G6PDd to NP, prompts us to propose the rationale for a population-specific management approach to rationalize design of therapeutic interventions of SARS-CoV-2 infection, based on use of NP. This strategy may lead to personalized approaches and improve disease-related outcomes.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , COVID-19/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Humanos
9.
Oncol Rep ; 45(1): 254-264, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210724

RESUMO

In colorectal cancer (CRC), high expression of trefoil factor 3 (TFF3) is associated with tumor progression and reduced patient survival; however, bioinformatics analyses of public 'omics' databases show low TFF3 expression in CRCs as compared to normal tissues. Thus, we examined TFF3 expression in CRCs and matching normal tissues to evaluate its role in CRC progression. TFF3 gene expression was characterized using the bioinformatics portal UALCAN (http://ualcan.path.uab.edu). Tissue microarrays (TMAs) of archival CRC specimens (n=96) were immunostained with anti­human TFF3 antibodies. Immunohistochemical (IHC) staining intensity was semi­quantitatively scored. For this cohort, the median follow­up was 5.4 years. Associations between clinical and pathological variables were determined using Chi­square or Fisher's exact tests. Univariate disease­free survival was estimated by the Kaplan­Meier method. Omics data analyses by UALCAN showed downregulation of TFF3 expression in CRC relative to normal tissue at protein (χ2, P<0.0001) levels. There was a similar decreasing trend of TFF3 expression in the pathologic stages of the CRCs (RNA, χ2, P=0.88 and protein, χ2 P<0.0001). UALCAN data analysis showed that TFF3 exhibited 27% lower mRNA expression in tumors with mutant TP53 (P=0.007). Confirming the findings of omics analyses, IHC analysis of TMAs exhibited lower TFF3 expression in 95.6% (65 of 68) of the available normal­tumor matching pairs (χ2, P<0.0001). There was no statistically significant association of tumor TFF3 expression with patient sex, race/ethnicity, tumor location within the colorectum, Tumor, Node, Metastasis (TNM) stage, lymph node metastasis, or surgical margins. However, low TFF3 IHC staining in tumor tissue was associated with histological grade (P=0.026). Kaplan­Meier survival analysis showed no prognostic value of low TFF3 expression relative to those with high expression (log­rank, P=0.605). Our findings demonstrate low expression of TFF3 in CRCs. Association between low TFF3 and histopathological features suggests involvement of this molecule in progression of CRC.


Assuntos
Neoplasias Colorretais/química , Fator Trefoil-3/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fator Trefoil-3/genética , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/genética
10.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081219

RESUMO

HER2 transactivation by the HER3 ligand heregulin (HRG) promotes an endocrine-resistant phenotype in the estrogen receptor-positive (ER+) luminal-B subtype of breast cancer. The underlying biological mechanisms that link them are, however, incompletely understood. Here, we evaluated the putative role of the lipogenic enzyme fatty acid synthase (FASN) as a major cause of HRG-driven endocrine resistance in ER+/HER2-negative breast cancer cells. MCF-7 cells engineered to stably overexpress HRG (MCF-7/HRG), an in vitro model of tamoxifen/fulvestrant-resistant luminal B-like breast cancer, showed a pronounced up-regulation of FASN gene/FASN protein expression. Autocrine HRG up-regulated FASN expression via HER2 transactivation and downstream activation of PI-3K/AKT and MAPK-ERK1/2 signaling pathways. The HRG-driven FASN-overexpressing phenotype was fully prevented in MCF-7 cells expressing a structural deletion mutant of HRG that is sequestered in a cellular compartment and lacks the ability to promote endocrine-resistance in an autocrine manner. Pharmacological inhibition of FASN activity blocked the estradiol-independent and tamoxifen/fulvestrant-refractory ability of MCF-7/HRG cells to anchorage-independently grow in soft-agar. In vivo treatment with a FASN inhibitor restored the anti-tumor activity of tamoxifen and fulvestrant against fast-growing, hormone-resistant MCF-7/HRG xenograft tumors in mice. Overall, these findings implicate FASN as a key enabler for endocrine resistance in HRG+/HER2- breast cancer and highlight the therapeutic potential of FASN inhibitors for the treatment of endocrine therapy-resistant luminal-B breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ácido Graxo Sintase Tipo I/metabolismo , Proteínas/metabolismo , Animais , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ácido Graxo Sintase Tipo I/genética , Feminino , Fulvestranto/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/genética , Tamoxifeno/uso terapêutico
11.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086721

RESUMO

Sustained HER2/HER3 signaling due to the overproduction of the HER3 ligand heregulin (HRG) is proposed as a key contributor to endocrine resistance in estrogen receptor-positive (ER+) breast cancer. The molecular mechanisms linking HER2 transactivation by HRG-bound HER3 to the acquisition of a hormone-independent phenotype in ER+ breast cancer is, however, largely unknown. Here, we explored the possibility that autocrine HRG signaling drives cytokine-related endocrine resistance in ER+ breast cancer cells. We used human cytokine antibody arrays to semi-quantitatively measure the expression level of 60 cytokines and growth factors in the extracellular milieu of MCF-7 cells engineered to overexpress full-length HRGß2 (MCF-7/HRG cells). Interleukin-8 (IL-8), a chemokine closely linked to ER inaction, emerged as one the most differentially expressed cytokines. Cytokine profiling using structural deletion mutants lacking both the N-terminus and the cytoplasmic-transmembrane region of HRGß2-which is not secreted and cannot transactivate HER2-or lacking a nuclear localization signal at the N-terminus-which cannot localize at the nucleus but is actively secreted and transactivates HER2-revealed that the HRG-driven activation of IL-8 expression in ER+ cells required HRG secretion and transactivation of HER2 but not HRG nuclear localization. The functional blockade of IL-8 with a specific antibody inversely regulated ERα-driven transcriptional activation in endocrine-sensitive MCF-7 cells and endocrine-resistant MCF-7/HRG cells. Overall, these findings suggest that IL-8 participates in the HRG-driven endocrine resistance program in ER+/HER2- breast cancer and might illuminate a potential clinical setting for IL8- or CXCR1/2-neutralizing antibodies.


Assuntos
Neoplasias da Mama/metabolismo , Sistema Endócrino/metabolismo , Interleucina-8/metabolismo , Neuregulina-1/metabolismo , Receptores de Estrogênio/metabolismo , Comunicação Autócrina , Neoplasias da Mama/patologia , Quimiocinas/metabolismo , Feminino , Humanos , Células MCF-7 , Modelos Biológicos , Receptor ErbB-2/metabolismo , Transcrição Gênica , Regulação para Cima
12.
Exp Mol Pathol ; 108: 173-182, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31004600

RESUMO

Despite the lack of a complete understanding of the disparities involved, prostate cancer (PCa) has both higher incidence and death rates in African American Men (AAM) relative to those of Caucasian American Men (CAM). MHC class I polypeptide related sequence A (MICA) is an innate immunity protein involved in tumor immunoevasion. Due to a lack of reports of race-specific expression of MICA in PCa, we evaluated MICA expression in patients' tumors and in cell lines from a racially diverse origin. Immunohistochemistry was done on a tissue microarray (TMA) with antibodies against MICA. Tumor MICA mRNA was assessed by data mining using Oncomine and PROGeneV2. Surface MICA and release rate of soluble (s) MICA was evaluated in PCa cell lines originally derived from African American (MDA-PCa-2b) or Caucasian (LNCaP and DU-145) PCa patients. Prostate tumor tissue had a 1.7-fold higher MICA expression relative to normal tissue (p < .0001). MICA immunoreactivity in PCa tissue from AAM was 24% lower (p = .002) compared to CAM. Survival analysis revealed a marginal association of low MICA with poor overall survival (OS) (p = .058). By data mining analysis, a 2.9-fold higher level of MICA mRNA was evidenced in tumor compared to normal tissue (p < .0001). Tumors from AAM had 24% lower levels of MICA mRNA compared to tumors from CAM (p = .038), and poor prognosis was found for patients with lower MICA mRNA (p = .028). By flow cytometry analysis, cell fraction positive for surface MICA was of 3% in MDA-PCa-2b cells, 54% in DU-145 cells, and 67% in LNCaP cells (p < .0001). sMICA was detected in DU-145 and LNCaP cells, but was not detected in MDA-PCa-2b cells. Both LNCaP and DU-145 cells were sensitive to cytolysis mediated by Natural killer (NK) cells. MDA-PCa-2b cells, however were between 1.3-fold at 10:1 Effector:Target (E:T) ratio (p < .0001) and 2-fold at 50:1 E:T ratio (p < .0001) more resistant to NK-mediated cytolysis relative to cells from Caucasian origin. These results suggest that MICA expression may be related to the aggressive nature of PCa. Our findings also demonstrate for the first time that there are variations in MICA expression in the context of racial differences. This study establishes a rationale for further investigation of MICA as a potential race-specific prognostic marker in PCa.


Assuntos
Negro ou Afro-Americano/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias da Próstata/genética , População Branca/genética , Idoso , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Perfilação da Expressão Gênica/métodos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/metabolismo , Análise de Sobrevida , Estados Unidos
13.
ACS Omega ; 4(1): 1272-1280, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30729226

RESUMO

We hypothesized that identifying plasma glycoproteins that predict the development of heart failure following myocardial infarction (MI) could help to stratify subjects at risk. Plasma collected at visit 2 (2005-2008) from an MI subset of Jackson Heart Study participants underwent glycoproteomics and was grouped by the outcome: (1) heart failure hospitalization after visit 2 (n = 15) and (2) without hospitalization by 2012 (n = 45). Proteins were mapped for biological processes and functional pathways using Ingenuity Pathway Analysis and linked to clinical characteristics. A total of 198 glycopeptides corresponding to 88 proteins were identified (data available via ProteomeXchange with identifier PXD009870). Of these, 14 glycopeptides were significantly different between MI and MI + HF groups and corresponded to apolipoprotein (Apo) F, transthyretin, Apo C-IV, prostaglandin-D2 synthase, complement C9, and CD59 (p < 0.05 for all). All proteins were elevated in the MI + HF group, except CD59, which was lower. Four canonical pathways were upregulated in the MI + HF group (p < 0.05 for all): acute phase response, liver X receptor/retinoid X receptor, and macrophage reactive oxygen species generation. The coagulation pathway was significantly downregulated in the MI + HF group (p < 0.05). Even after adjustment for age and sex, Apo F was associated with the increased risk for heart failure (OR = 21.84; 95% CI 3.20-149.14). In conclusion, glycoproteomic profiling provided candidate early MI predictors of later progression to heart failure.

14.
Clin Lymphoma Myeloma Leuk ; 18(12): e501-e508, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30181103

RESUMO

BACKGROUND: The survival of patients with B-acute lymphoblastic leukemia (B-ALL) is significantly lower in African American (AA) children compared with European American children (EA). Here, we present a whole exome sequencing (WES) study showing race-specific genetic variations that may play a role on the disparate outcomes among AA and EA children with B-ALL. PATIENTS AND METHODS: Five AA and 15 EA patients ranging in age from 1 to 18 years were enrolled. The median blast percentage was 94.8% (range, 64.5%-99.9%). Frozen bone marrow aspirate was used to extract DNA, and WES was performed, focusing on race and B-ALL-specific germline mutations. RESULTS: Most genetic variants (n = 339) were shared between AA and EA children. Some genetic aberrations were only uniquely identified in AA (n = 58) and others in EA (n = 52) In AA, the genetic aberrations clustered in canonical pathways related to telomerase signaling and cancer signaling. In EA, the unique genetic aberration clustered in pathways related to stem cell pluripotency and hereditary cancer. CONCLUSIONS: Our study revealed aberrant genetic aberrations in signaling networks that may contribute to race-specific aspects of leukemogenesis. Our results suggest the value of WES as a tool for development of individual gene signatures and gene scores for AA and EA children afflicted by B-ALL. These findings may ultimately impact disease management and contribute to the elimination of disparate outcomes in AA children with B-ALL.


Assuntos
Negro ou Afro-Americano/genética , Predisposição Genética para Doença , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , População Branca/genética , Adolescente , Fatores Etários , Biomarcadores Tumorais , Biópsia , Medula Óssea/patologia , Criança , Pré-Escolar , Biologia Computacional , Gerenciamento Clínico , Feminino , Mutação em Linhagem Germinativa , Humanos , Lactente , Masculino , Polimorfismo de Nucleotídeo Único , Vigilância da População , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Sequenciamento Completo do Genoma
15.
Basic Res Cardiol ; 113(5): 40, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30132266

RESUMO

Sex differences in heart failure development following myocardial infarction (MI) are not fully understood. We hypothesized that differential MI signaling could explain variations in outcomes. Analysis of the mouse heart attack research tool 1.0 (422 mice; young = 5.4 ± 0.1; old = 23.3 ± 0.1 months of age) was used to dissect MI signaling pathways, which was validated in a new cohort of mice (4.8 ± 0.2 months of age); and substantiated in humans. Plasma collected at visit 2 from the MI subset of the Jackson Heart Study (JHS; a community-based study consisting of middle aged and older adults of African ancestry) underwent glycoproteomics grouped by outcome: (1) heart failure hospitalization after visit 2 (n = 3 men/12 women) and (2) without hospitalization through 2012 (n = 24 men/21 women). Compared to young male mice, the infarct region of young females had fewer, but more efficient tissue clearing neutrophils with reduced pro-inflammatory gene expression. Apolipoprotein (Apo) F, which acts upstream of the liver X receptors/retinoid X receptor (LXR/RXR) pathway, was elevated in the day 7 infarcts of old mice compared to young controls and was increased in both men and women with heart failure. In vitro, Apo F stimulated CD36 and peroxisome proliferator-activated receptor (PPAR)γ activation in male neutrophils to turn off NF-κB activation and stimulate LXR/RXR signaling to initiate resolution. Female neutrophils were desensitized to Apo F and instead relied on thrombospondin-1 stimulation of CD36 to upregulate AMP-activated protein kinase, resulting in an overall better wound healing strategy. With age, female mice were desensitized to LXR/RXR signaling, resulting in enhanced interleukin-6 activation, a finding replicated in the JHS community cohort. This is the first report to uncover sex differences in post-MI neutrophil signaling that yielded better outcomes in young females and worse outcomes with age.


Assuntos
Insuficiência Cardíaca/metabolismo , Receptores X do Fígado/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Neutrófilos/metabolismo , Receptores X de Retinoides/metabolismo , Transdução de Sinais , Função Ventricular Esquerda , Remodelação Ventricular , Adulto , Negro ou Afro-Americano , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Bases de Dados Factuais , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/etnologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infarto do Miocárdio/etnologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fenótipo , Prognóstico , Fatores Sexuais , Estados Unidos/epidemiologia , Adulto Jovem
16.
Postgrad Med ; 129(7): 676-685, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28562148

RESUMO

OBJECTIVE: Limited research has evaluated the individual and combined associations of physical activity (PA), cardiorespiratory fitness (CRF) and muscle strengthening activities (MSA) on generalized anxiety, panic and depressive symptoms. We evaluated this topic in a representative sample of young (20-39 years) adults, with considerations by sex. METHODS: Data from the 1999-2004 National Health and Nutrition Examination Survey (N = 2088) were used. Generalized anxiety, panic and depressive symptoms were assessed via self-report as well as using the Generalized Anxiety Disorder, Panic Disorder, and Depressive Disorders modules of the automated version of the World Health Organization Composite International Diagnostic Interview (CIDI-Auto 2.1). PA and MSA were assessed via validated self-report questionnaires and CRF was determined via a submaximal treadmill-based test. An index variable was created summing the number (range = 0-3) of these parameters for each participant. For example, those meeting PA guidelines, MSA guidelines and having moderate-to-high CRF were classified as having an index score of 3. RESULTS: MSA was not independently associated with generalized anxiety, panic and depressive symptoms, but those with higher levels of PA and CRF had a reduced odds of these symptoms (ranging from 40 to 46% reduced odds). Compared to those with an index score of 0, those with an index score of 1, 2, and 3, respectively, had a 39%, 54% and 71% reduced odds of having generalized anxiety, panic and depressive symptoms. Results were consistent across both sexes. CONCLUSION: PA and CRF, but not MSA, were independently associated with generalized anxiety, panic and depressive symptoms. There was evidence of an additive association between PA, CRF, and MSA on these symptoms.


Assuntos
Aptidão Cardiorrespiratória , Transtorno Depressivo/terapia , Exercício Físico , Transtorno de Pânico/terapia , Treinamento Resistido , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Fatores Sexuais , Adulto Jovem
17.
Oncoscience ; 3(7-8): 242-257, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713913

RESUMO

The angiogenic inducer CCN1 (Cysteine-rich 61, CYR61) is differentially activated in metastatic breast carcinomas. However, little is known about the precise mechanisms that underlie the pro-metastatic actions of CCN1. Here, we investigated the impact of CCN1 expression on fatty acid synthase (FASN), a metabolic oncogene thought to provide cancer cells with proliferative and survival advantages. Forced expression of CCN1 in MCF-7 cells robustly up-regulated FASN protein expression and also significantly increased FASN gene promoter activity 2- to 3-fold, whereas deletion of the sterol response element-binding protein (SREBP) binding site in the FASN promoter completely abrogated CCN1-driven transcriptional activation. Pharmacological blockade of MAPK or PI-3'K activation similarly prevented the ability of CCN1 to induce FASN gene activation. Pharmacological inhibition of FASN activity with the mycotoxin cerulenin or the small compound C75 reversed CCN1-induced acquisition of estrogen independence and resistance to hormone therapies such as tamoxifen and fulvestrant in anchorage-independent growth assays. This study uncovers FASNdependent endogenous lipogenesis as a new mechanism controlling the metastatic phenotype promoted by CCN1. Because estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer, this previously unrecognized CCN1-driven lipogenic phenotype represents a novel metabolic target to clinically manage metastatic disease progression.

18.
Front Oncol ; 6: 144, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379206

RESUMO

Hepatoma upregulated protein (HURP) is a multifunctional protein with clinical promise. This protein has been demonstrated to be a predictive marker for the outcome in high-risk prostate cancer (PCa) patients, besides being a resistance factor in PCa. Although changes in oxygen tension (pO2) are associated with PCa aggressiveness, the role of hypoxia in the regulation of tumor progression genes such as HURP has not yet been described. We hypothesized that pO2 alteration is involved in the regulation of HURP expression in PCa cells. In the present study, PCa cells were incubated at 2% O2 (hypoxia) and 20% O2 (normoxia) conditions. Hypoxia reduced cell growth rate of PCa cells, when compared to the growth rate of cells cultured under normoxia (p < 0.05). The decrease in cell viability was accompanied by fivefold (p < 0.05) elevated rate of vascular endothelial growth factor (VEGF) release. The expression of VEGF and the hypoxia-inducible metabolic enzyme carbonic anhydrase 9 were elevated maximally nearly 61-fold and 200-fold, respectively (p < 0.05). Noted in two cell lines (LNCaP and C4-2B) and independent of the oxygen levels, HURP expression assessed at both mRNA and protein levels was reduced. However, the decrease was more pronounced in cells cultured under hypoxia (p < 0.05). Interestingly, the analysis of patients' specimens by Western blot revealed a marked increase of HURP protein (fivefold), when compared to control (cystoprostatectomy) tissue (p < 0.05). Immunohistochemistry analysis showed an increase in the immunostaining intensity of HURP and the hypoxia-sensitive molecules, hypoxia-inducible factor 1-alpha (HIF-1α), VEGF, and heat-shock protein 60 (HSP60) in association with tumor grade. The data also suggested a redistribution of subcellular localization for HURP and HIF-1α from the nucleus to the cytoplasmic compartment in relation to increasing tumor grade. Analysis of HURP Promoter for HIF-1-binding sites revealed presence of four putative HIF binding sites on the promoter of DLGAP5/HURP gene in the non-translated region upstream from the start codon, suggesting association between HIF-1α and the regulation of HURP protein. Taken together, our findings suggest a modulatory role of hypoxia on the expression of HURP. Additionally our results provide basis for utilization of tumor-associated molecules as predictors of aggressive PCa.

19.
Oncotarget ; 7(44): 71151-71168, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27223424

RESUMO

The correction of specific signaling defects can reverse the oncogenic phenotype of tumor cells by acting in a dominant manner over the cancer genome. Unfortunately, there have been very few successful attempts at identifying the primary cues that could redirect malignant tissues to a normal phenotype. Here we show that suppression of the lipogenic enzyme fatty acid synthase (FASN) leads to stable reversion of the malignant phenotype and normalizes differentiation in a model of breast cancer (BC) progression. FASN knockdown dramatically reduced tumorigenicity of BC cells and restored tissue architecture, which was reminiscent of normal ductal-like structures in the mammary gland. Loss of FASN signaling was sufficient to direct tumors to a reversed phenotype that was near normal when considering the development of polarized growth-arrested acinar-like structure similar to those formed by nonmalignant breast cells in a 3D reconstituted basement membrane in vitro. This process, in vivo, resulted in a low proliferation index, mesenchymal-epithelial transition, and shut-off of the angiogenic switch in FASN-depleted BC cells orthotopically implanted into mammary fat pads. The role of FASN as a negative regulator of correct breast tissue architecture and terminal epithelial cell differentiation was dominant over the malignant phenotype of tumor cells possessing multiple cancer-driving genetic lesions as it remained stable during the course of serial in vivo passage of orthotopic tumor-derived cells. Transient knockdown of FASN suppressed hallmark structural and cytosolic/secretive proteins (vimentin, N-cadherin, fibronectin) in a model of EMT-induced cancer stem cells (CSC). Indirect pharmacological inhibition of FASN promoted a phenotypic switch from basal- to luminal-like tumorsphere architectures with reduced intrasphere heterogeneity. The fact that sole correction of exacerbated lipogenesis can stably reprogram cancer cells back to normal-like tissue architectures might open a new avenue to chronically restrain BC progression by using FASN-based differentiation therapies.


Assuntos
Neoplasias da Mama/patologia , Ácido Graxo Sintases/fisiologia , Lipogênese/fisiologia , Animais , Diferenciação Celular , Transição Epitelial-Mesenquimal , Matriz Extracelular/fisiologia , Ácido Graxo Sintases/antagonistas & inibidores , Feminino , Humanos , Células MCF-7 , Camundongos , Fenótipo , Transdução de Sinais
20.
J Cell Biochem ; 117(6): 1308-18, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26505164

RESUMO

Despite progression in diagnosis and treatment, prostate cancer (PCa) still represents the main cause of cancer-related mortality and morbidity in men. Although radiation therapy offers clinical benefit over other therapeutic modalities, the success of this therapeutic modality is commonly hampered by the resistance of advanced tumors. So far, the mechanisms governing tumor resistance to radiotherapy are not discussed in detail. Here, we demonstrate for the first time that the resistance of PCa to radiation therapy is attributed to elevated expression of Hepatoma Up-Regulated Protein (HURP). In PCa cells, the induction of HURP expression suppresses γ-irradiation-induced apoptosis. γ-irradiation-induced apoptosis of PCa cells is associated with expression of E2F1, p53, p21 proteins together with the phosphorylation of apoptosis signal-regulating kinase1 (ASK1), c-jun-N-terminal kinase (JNK) and Ataxia-telangiectasia mutated (ATM) and histone family member X (H2AX). Whereas, the induction of HURP expression is able to suppress γ-irradiation-induced effects on E2F1, p53, p21, ATM, ASK1, JNK and ATM, and H2AX. Also, inhibition of γ-irradiation-induced- cytochrome c release, cleavage of caspase-9, caspase-3, PARP, and reactive oxygen species (ROS) were noted in PCa cells induced for HURP expression. The observed radio-resistance of PCa is thought to be the consequence of HURP-mediated destabilization of p53 and ATM proteins that are essential for the modulation of γ-irradiation-induced apoptosis. Thus, based on our findings, PCa resistance to radiation therapy results from the deregulation of ASK1/ JNK; ATM/ H2AX; ATM/p53 and checkpoint kinase 2 (Chk2)/ E2F-1 in response to the elevated expression of HURP.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Tolerância a Radiação , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Linhagem Celular Tumoral , Raios gama , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Transdução de Sinais/efeitos da radiação , Ubiquitinação , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA