RESUMO
Gastric cancer ranks as the fifth-leading contributor to global cancer incidence and the fourth-highest in terms of cancer-related mortality. Helicobacter pylori (H. pylori) infection leads to inflammation and ulceration, atrophic and chronic gastritis, and eventually, increases the risk of developing gastric adenocarcinoma. In this paper, we delve into the combined impact of a high-salt diet (HSD) and concurrent H. pylori infection, which act as predisposing factors for gastric malignancy. A multitude of mechanisms come into play, fostering the development of gastric adenocarcinoma due to the synergy between an HSD and H. pylori colonization. These encompass the disruption of mucosal barriers, cellular integrity, modulation of H. pylori gene expression, oxidative stress induction, and provocation of inflammatory responses. On the whole, gastric cancer patients were reported to have a higher median sodium intake with respect to healthy controls. H. pylori infection constitutes an additional risk factor, with a particular impact on the population with the highest daily sodium intake. Consequently, drawing from epidemiological discoveries, substantial evidence suggests that diminishing salt intake and employing antibacterial therapeutics could potentially lower the susceptibility to gastric cancer among individuals.
RESUMO
Aging constitutes progressive physiological changes in an organism. These changes alter the normal biological functions, such as the ability to manage metabolic stress, and eventually lead to cellular senescence. The process itself is characterized by nine hallmarks: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. These hallmarks are risk factors for pathologies, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Emerging evidence has been focused on examining the genetic pathways and biological processes in organisms surrounding these nine hallmarks. From here, the therapeutic approaches can be addressed in hopes of slowing the progression of aging. In this review, data have been collected on the hallmarks and their relative contributions to aging and supplemented with in vitro and in vivo antiaging research experiments. It is the intention of this article to highlight the most important antiaging strategies that researchers have proposed, including preventive measures, systemic therapeutic agents, and invasive procedures, that will promote healthy aging and increase human life expectancy with decreased side effects.
RESUMO
The link between bio-metals, Alzheimer's disease (AD), and its associated protein, amyloid-ß (Aß), is very complex and one of the most studied aspects currently. Alzheimer's disease, a progressive neurodegenerative disease, is proposed to occurs due to the misfolding and aggregation of Aß. Dyshomeostasis of metal ions and their interaction with Aß has largely been implicated in AD. Copper plays a crucial role in amyloid-ß toxicity, and AD development potentially occurs through direct interaction with the copper-binding motif of APP and different amino acid residues of Aß. Previous reports suggest that high levels of copper accumulation in the AD brain result in modulation of toxic Aß peptide levels, implicating the role of copper in the pathophysiology of AD. In this review, we explore the possible mode of copper ion interaction with Aß, which accelerates the kinetics of fibril formation and promote amyloid-ß mediated cell toxicity in Alzheimer's disease and the potential use of various copper chelators in the prevention of copper-mediated Aß toxicity. KEYWORDS: Short Twitter Statement: Authors explore copper ion interaction w/ Aß and kinetics of fibril formation in promoting amyloid-ß mediated cell toxicity in Alzheimer's disease and the potential use of copper chelators in the prevention of copper-mediated Aß toxicity. SHORT TWITTER STATEMENT: Authors explore copper ion interaction w/Aß and kinetics of fibril formation in promoting amyloid-ß mediated cell toxicity in Alzheimer's disease and the potential use of copper chelators in the prevention of copper-mediated Aß toxicity.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Quelantes/química , Quelantes/farmacologia , Quelantes/uso terapêutico , Terapia por Quelação , Cobre/metabolismo , Humanos , Metais/químicaRESUMO
TAR DNA-binding protein-43 (TDP-43) pathology, including fibrillar aggregates and mutations, develops in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). Hyperphosphorylation and aggregation of TDP-43 contribute to pathology and are viable therapeutic targets for ALS. In vivo inhibition of TDP-43 aggregation was evaluated using anti-TDP-43 antibodies with promising outcomes. However, the exact mechanism of antibody-based inhibition targeting TDP-43 is not well understood but may lead to the identification of viable immunotherapies. Herein, the mechanism of in vitro aggregation of phosphorylated TDP-43 was explored, and the anti-TDP-43 antibodies tested for their inhibitor efficacies. Specifically, the aggregation of phosphorylated full-length TDP-43 protein (pS410) was monitored by transmission electron microscopy (TEM), turbidity absorbance, and thioflavin (ThT) spectroscopy. The protein aggregates were insoluble, ThT-positive and characterized with heterogeneous morphologies (fibers, amorphous structures). Antibodies specific to epitopes 178-393 and 256-269, within the RRM2-CTD domain, reduced the formation of ß-sheets and insoluble aggregates, at low antibody loading (antibody: protein ratio = 1 µg/mL: 45 µg/mL). Inhibition outcomes were highly dependent on the type and loading of antibodies, indicating dual functionality of such inhibitors, as aggregation inhibitors or aggregation promoters. Anti-SOD1 and anti-tau antibodies were not effective inhibitors against TDP-43 aggregation, indicating selective inhibition.
Assuntos
Esclerose Lateral Amiotrófica/genética , Anticorpos Anti-Idiotípicos/imunologia , Encefalopatias/genética , Proteínas de Ligação a DNA/genética , Degeneração Lobar Frontotemporal/genética , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/terapia , Encefalopatias/imunologia , Encefalopatias/patologia , Encefalopatias/terapia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/imunologia , Epitopos/imunologia , Degeneração Lobar Frontotemporal/imunologia , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/terapia , Humanos , Microscopia Eletrônica de Transmissão , Fosforilação/genética , Agregados Proteicos/genética , Agregados Proteicos/imunologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/terapia , Conformação Proteica em Folha beta/genética , Superóxido Dismutase-1/antagonistas & inibidores , Superóxido Dismutase-1/imunologia , Proteínas tau/antagonistas & inibidores , Proteínas tau/imunologiaRESUMO
Gelsolin, an actin-binding protein, is localized intra- and extracellularly in the bloodstream and throughout the body. Gelsolin amyloidosis is a disease characterized by several point mutations that lead to cleavage and fibrillization of gelsolin. The D187 mutation to N or Y leads to aggregation of peptide fragments with shortest aggregating peptide identified as 182SFNNGDCFILD192. Recently, G167 has also been identified as relevant gelsolin mutation, which leads to gelsolin deposits in kidneys, but its aggregation is much less understood. Hence, we systematically investigated in vitro the aggregation propensities of the following gelsolin peptides: 167GRRVV171 (1), 161RLFQVKG167 (2), 184NNGDCFILDL193 (3), 188CFILDL193 (4), 187DCFILDL193 (5), and their respective mutants (G167K, G167R, N184K, D187Y, D187N), by using spectroscopic methods [fluorescence Proteostat, Thioflavin T (ThT), turbidity assay, and Dynamic Light Scattering (DLS)], and Transmission Electron Microscopy (TEM). The (non) mutant peptides containing CFILDL sequence aggregated into fibrillar networks, while G167R mutation promoted aggregation compared to the wild-type sequence. In the presence of inhibitors, Methylene Blue (MB) and epigallocatechin gallate (EGCG), the gelsolin peptide (3-5) aggregation was reduced with the IC50 values in the 2-13 µM range. We discovered that inhibitors have dual functionality, as aggregation inhibitors and disaggregation promoters, potentially allowing for the prevention and reversal of gelsolin amyloidosis. Such therapeutic strategies may improve outcomes related to other amyloidogenic diseases of the heart, brain, and eye.
Assuntos
Substituição de Aminoácidos , Gelsolina/química , Mutação de Sentido Incorreto , Peptídeos/química , Agregados Proteicos , Gelsolina/genética , Humanos , Peptídeos/genéticaRESUMO
Cataracts, an eye lens clouding disease, are debilitating and while operable, remain without a cure. αA66-80 crystallin peptide abundant in cataracted eye lenses contributes to aggregation of αA-crystallin protein leading to cataracts. Inspired by the versatility of macrocycles and programmable guest selectivity through discrete functionalizations, we report on three water-soluble ionic resorcinarene receptors (A, B, and C) that disrupt the aggregation of αA66-80 crystallin peptide. A and B each possess four anionic sulfonate groups, while C includes four cationic ammonium groups with four flexible extended benzyl groups. Through multiple non-covalent attractions, these receptors successfully disrupt and reverse the aggregation of αA66-80 crystallin peptide, which was studied through spectroscopic, spectrometric, calorimetric, and imaging techniques. The αA66-80·receptor complexes were also explored using molecular dynamics simulation, and binding energies were calculated. Even though each of the three receptors can bind with the peptide, receptor C was characterized by the highest binding energy and affinity for three different domains of the peptide. In effect, the most efficient inhibitor was a cationic receptor C via extended aromatic interactions. These results highlight the potential of versatile and tunable functionalized resorcinarenes as potential therapeutics to reverse the aggregation of α-crystallin dominant in eye cataracts.