Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Int J Biol Macromol ; 206: 467-480, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202638

RESUMO

Lung cancer is the most common cause of cancer death worldwide. Thereby, new treatment strategies as targeting nano-therapy present promising possibilities to control the aggressiveness of lung cancer. Dual CD44 and folate receptors targetable nanocapsule based on folic-polyethylene glycol-hyaluronic (FA-PEG-HA) were fabricated to improve the therapeutic activity of 4-Methylumbelliferone (4-MU) toward lung cancer. In this study, we fabricate 4-MU Nps as a hybrid polymeric (protamine) protein (albumin) nanocapsule, then functionalized by targeting layer to form 4-MU@FA-PEG-HA Nps with encapsulation efficacy 96.15%. The in vitro study of free 4-MU, 4-MU Nps and 4-MU@FA-PEG-HA Nps on A549 lung cancer cells reveal that the 4-MU Nps and 4-MU@FA-PEG-HA Nps were more cytotoxic than free 4-MU on A549 cells. The observed therapeutic activity of 4-MU@FA-PEG-HA Nps on urethane-induced lung cancer model, potentiality revealed a tumor growth inhibition via apoptotic mechanisms and angiogenesis inhibition. The results were supported by Enzyme-linked immunosorbent assay (ELIZA) of transforming growth factors (TGFß1) and serum HA, histopathological analysis as well as immunohistochemical Ki67, CD44, Bcl-2 and caspace-3 staining. Moreover, 4-MU@FA-PEG-HA Nps exhibited a promising safety profile. Hence, it is expected that our developed novel nano-system can be used for potential application on tumor therapy for lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanocápsulas , Nanopartículas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ácido Fólico , Humanos , Ácido Hialurônico , Himecromona/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Nanocápsulas/uso terapêutico , Polietilenoglicóis/uso terapêutico
3.
Materials (Basel) ; 13(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261031

RESUMO

The introduction of nanoparticles made of polymers, protein, and lipids as drug delivery systems has led to significant progress in modern medicine. Since the application of nanoparticles in medicine involves the use of biodegradable, nanosized materials to deliver a certain amount of chemotherapeutic agents into a tumor site, this leads to the accumulation of these nanoencapsulated agents in the right region. This strategy minimizes the stress and toxicity generated by chemotherapeutic agents on healthy cells. Therefore, encapsulating chemotherapeutic agents have less cytotoxicity than non-encapsulation ones. The purpose of this review is to address how nanoparticles made of polymers and lipids can successfully be delivered into lung cancer tumors. Lung cancer types and their anatomies are first introduced to provide an overview of the general lung cancer structure. Then, the rationale and strategy applied for the use of nanoparticle biotechnology in cancer therapies are discussed, focusing on pulmonary drug delivery systems made from liposomes, lipid nanoparticles, and polymeric nanoparticles. Many nanoparticles fabricated in the shape of liposomes, lipid nanoparticles, and polymeric nanoparticles are summarized in our review, with a focus on the encapsulated chemotherapeutic molecules, ligand-receptor attachments, and their targets. Afterwards, we highlight the nanoparticles that have demonstrated promising results and have been delivered into clinical trials. Recent clinical trials that were done for successful nanoparticles are summarized in our review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA