Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1156804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600190

RESUMO

Tomato (Solanum lycopersicum) cv. Moneymaker (MM) is very susceptible to the grey mould Botrytis cinerea, while quantitative resistance in the wild species Solanum habrochaites (accession LYC4) has been reported. In leaf inoculation assays, an effect of nutrient and spore concentration on disease incidence was observed. Resistance in LYC4 leaves was manifested as a high incidence of tiny black, dispersed spots which did not expand ("incompatible interaction") and was pronounced when B. cinerea was inoculated at high spore density (1000 spores/µL) in medium with 10 mM sucrose and 10 mM phosphate buffer. Under the same condition, a high frequency of expanding lesions was observed on MM leaves ("compatible interaction"). Remarkably, inoculation of LYC4 with a high spore density in medium with higher concentrations of sucrose and/or phosphate as well as lower spore density (30 spores/µL) in medium with low sucrose and phosphate, all resulted in a higher percentage of expanding lesions. The lesion sizes at 3 days post inoculation differed markedly between all these inoculation conditions. This inoculation method provides a convenient tool to study mechanisms that determine the distinction between compatible and incompatible interactions between B. cinerea and a host plant.

2.
Plant Physiol ; 164(1): 352-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24259685

RESUMO

Plants perceive microbial invaders using pattern recognition receptors that recognize microbe-associated molecular patterns. In this study, we identified RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 (RBPG1), an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like protein, AtRLP42, that recognizes fungal endopolygalacturonases (PGs) and acts as a novel microbe-associated molecular pattern receptor. RBPG1 recognizes several PGs from the plant pathogen Botrytis cinerea as well as one from the saprotroph Aspergillus niger. Infiltration of B. cinerea PGs into Arabidopsis accession Columbia induced a necrotic response, whereas accession Brno (Br-0) showed no symptoms. A map-based cloning strategy, combined with comparative and functional genomics, led to the identification of the Columbia RBPG1 gene and showed that this gene is essential for the responsiveness of Arabidopsis to the PGs. Transformation of RBPG1 into accession Br-0 resulted in a gain of PG responsiveness. Transgenic Br-0 plants expressing RBPG1 were equally susceptible as the recipient Br-0 to the necrotroph B. cinerea and to the biotroph Hyaloperonospora arabidopsidis. Pretreating leaves of the transgenic plants with a PG resulted in increased resistance to H. arabidopsidis. Coimmunoprecipitation experiments demonstrated that RBPG1 and PG form a complex in Nicotiana benthamiana, which also involves the Arabidopsis leucine-rich repeat receptor-like protein SOBIR1 (for SUPPRESSOR OF BIR1). sobir1 mutant plants did not induce necrosis in response to PGs and were compromised in PG-induced resistance to H. arabidopsidis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Poligalacturonase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Aspergillus niger/patogenicidade , Botrytis/patogenicidade , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Oomicetos/patogenicidade , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA