Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Mol Biosci ; 10: 1274221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053578

RESUMO

With rapid industrialization, urbanization, and climate change, the impact of environmental factors on human health is becoming increasingly evident and understanding the complex mechanisms involved is vital from a healthcare perspective. Nevertheless, the relationship between physiological stress resulting from environmental stressors and environmental disease is complex and not well understood. Chronic exposure to environmental stressors, such as air and water contaminants, pesticides, and toxic metals, has been recognized as a potent elicitor of physiological responses ranging from systemic inflammation to immune system dysregulation causing or progressing environmental diseases. Conversely, physiological stress can exacerbate susceptibility to environmental diseases. Stress-induced alterations in immune function and hormonal balance may impair the ability to detoxify harmful substances and combat pathogens. Additionally, prolonged stress can impact lifestyle choices, leading to harmful behaviors. Understanding the link between physiological stress and environmental disease requires a systematic, multidisciplinary approach. Addressing this complex relationship necessitates the establishment of a global research network. This perspective discusses the intricate interplay between physiological stress and environmental disease, focusing on common environmental diseases, cancer, diabetes, and cognitive degeneration. Furthermore, we highlight the intricate and reciprocal nature of the connection between physiological stress and these environmental diseases giving a perspective on the current state of knowledge as well as identifying where further information is necessary. Recognizing the role of physiological stress in environmental health outcomes will aid in the development of comprehensive strategies to safeguard public health and promote ecological balance.

3.
N Biotechnol ; 76: 82-89, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37217117

RESUMO

Green Liver Systems employ the ability of macrophytes to take up, detoxify (biotransform), and bioaccumulate pollutants; however, these systems require optimization to target specific pollutants. In the present study, the aim was to test the applicability of the Green Liver System for diclofenac remediation considering the effects of selected variables. As a starting point, 42 macrophyte life forms were evaluated for diclofenac uptake. With the three best performing macrophytes, the system efficiency was evaluated at two diclofenac concentrations, one environmentally relevant and that other significantly higher (10 µg/L and 150 µg/L) and in two system sizes (60 L and 1000 L) as well as at three flow rates (3, 7, and 15 L/min). The effect of single species and combinations on removal efficiency was also considered. The highest internalization percentage was recorded in Ceratophyllum spp., Myriophyllum spp., and Egeria densa. Phytoremediation efficiency with species combinations was far superior to utilizing only a single macrophyte type. Furthermore, the results indicate that the flow rate significantly affected the removal efficiency of the pharmaceutical tested, with the highest remediation efficiency obtained with the highest flow rate. System size did not significantly affect phytoremediation; however, increase diclofenac concentration reduced the systems performance significantly. When planning the setup of a Green Liver System for wastewater remediation, basic knowledge about the water, i.e., pollutant types and flow, must be utilized during planning to optimize remediation. Various macrophytes show diverse uptake efficiencies for different contaminants and should be selected based on the pollutant composition of the wastewater.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Biodegradação Ambiental , Diclofenaco , Águas Residuárias , Fígado , Poluentes Químicos da Água/análise
4.
Front Biosci (Landmark Ed) ; 28(3): 48, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-37005763

RESUMO

BACKGROUND: Disinfection byproducts (DBPs) cause endocrine disruption via estrogenic or anti-estrogenic effects on estrogen receptors. However, most studies have focused on human systems, with little experimental data being presented on aquatic biota. This study aimed to compare the effects of nine DBPs on zebrafish and human estrogen receptor alpha (zERα and hERα). METHODS: In vitro enzyme response-based tests, including cytotoxicity and reporter gene assays, were performed. Additionally, statistical analysis and molecular docking studies were employed to compare ERα responses. RESULTS: Iodoacetic acid (IAA), chloroacetonitrile (CAN), and bromoacetonitrile (BAN) showed robust estrogenic activity on hERα(maximal induction ratios of 108.7%, 50.3%, and 54.7%, respectively), while IAA strongly inhibited the estrogenic activity induced by 17ß-estradiol (E2) in zERα (59.8% induction at the maximum concentration). Chloroacetamide (CAM) and bromoacetamide (BAM) also showed robust anti-estrogen effects in zERα (48.1% and 50.8% induction at the maximum concentration, respectively). These dissimilar endocrine disruption patterns were thoroughly assessed using Pearson correlation and distance-based analyses. Clear differences between the estrogenic responses of the two ERαs were observed, whereas no pattern of anti-estrogenic activities could be established. Some DBPs strongly induced estrogenic endocrine disruption as agonists of hERα, while others inhibited estrogenic activity as antagonists of zERα. Principal coordinate analysis (PCoA) showed similar correlation coefficients for estrogenic and anti-estrogenic responses. Reproducible results were obtained from computational analysis and the reporter gene assay. CONCLUSIONS: Overall, the effects of DBPs on both human and zebrafish highlight the importance of controlling their differences in responsiveness for estrogenic activities including the water quality monitoring and endocrine disruption, as DBPs have species-specific ligand-receptor interactions.


Assuntos
Receptor alfa de Estrogênio , Peixe-Zebra , Animais , Humanos , Receptor alfa de Estrogênio/genética , Desinfecção , Simulação de Acoplamento Molecular , Estrogênios/farmacologia , Receptores de Estrogênio/genética
5.
Ecotoxicology ; 32(3): 394-402, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37000303

RESUMO

Titanium dioxide, frequently used in commonplace products, is now regularly detected in aquatic environments. Understanding its toxic effects on native biota is essential. However, combined toxicity with commonly occurring pollutants, such as the pharmaceutical diclofenac, may provide more insight into environmental situations. Therefore, the present study aimed to evaluate the effects of titanium dioxide and diclofenac, individually and combined, on the macrophyte Egeria densa. Diclofenac uptake and removal by the macrophyte were assessed. Diclofenac and titanium dioxide were mixed prior to exposure to allow binding, which was assessed. Toxicity of the individual compounds and the combination was evaluated by assaying enzymes as bioindicators of biotransformation and the antioxidative system. Cytosolic glutathione S-transferase and glutathione reductase activities were increased by diclofenac, titanium dioxide, and the combination. Both enzymes' activities were more significantly elevated by diclofenac and the combination than nanoparticles alone. Microsomal glutathione S-transferase was unaffected by diclofenac exposure but inhibited with titanium dioxide and the mixture. Diclofenac elicited the most significant response. Based on the data, the cytosolic enzymes effectively prevented damage.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Antioxidantes/metabolismo , Titânio/toxicidade , Estresse Oxidativo , Diclofenaco/toxicidade , Óxidos/farmacologia , Glutationa Transferase/metabolismo , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
6.
Heliyon ; 8(10): e11237, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36339987

RESUMO

Urbanization and population growth demand the construction of structures to facilitate the need for space, and old infrastructures must make space for new ones leading to demolition and concrete debris. In addition to demolition, aging and weather are factors leading to concrete deterioration and, thus, a new challenge as an environmental pollutant. Studies on how concrete debris and leachate affect biota in the environment are limited. The present study aimed to understand the effects of leachate from various sizes of concrete debris on the three oligochaete species Enchytraeus crypticus, Tubifex, and Lumbriculus variegatus. Acute toxicity testing was carried out to determine the adverse effects over time. The oligochaetes' survival was monitored as well as the activity of the biotransformation enzyme glutathione S-transferase and the antioxidative enzyme catalase as indicators of the oxidative stress status. Leachate from the smallest concrete particle size (<1 mm) was found to be the most toxic as it caused, on average, 6-fold increased oligochaete mortality compared to the larger pieces (2-5 cm) after 96 h of exposure, potentially due to the larger surface area facilitating the release of toxicants. Substrate buffered the toxic effect of the leachate with 42 ± 12% fewer mortalities and reduced adverse effects on the enzymes. Of the three oligochaetes, E. crypticus was the most resilient to the concrete leachate. The study is the first to investigate the effects of concrete leachate on oligochaetes.

7.
Environ Toxicol ; 37(11): 2615-2638, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35907204

RESUMO

The environmental impacts of plastic pollution have recently attracted universal attention, especially in the aquatic environment. However, research has mostly been focused on marine ecosystems, even though freshwater ecosystems are equally if not more polluted by plastics. In addition, the mechanism and extent to which plastic pollution affects aquatic biota and the rates of transfer to organisms through food webs eventually reaching humans are poorly understood, especially considering leaching hazardous chemicals. Several studies have demonstrated extreme toxicity in freshwater organisms such Daphnia. When such keystone species are affected by ambient pollution, entire food webs are destabilized and biodiversity is threatened. The unremitting increase in plastic contaminants in freshwater environments would cause impairments in ecosystem functions and structure, leading to various kinds of negative ecological consequences. As various studies have reported the effects on daphnids, a consolidation of this literature is critical to discuss the limitations and knowledge gaps and to evaluate the risk posed to the aquatic environment. This review was undertaken due to the evident need to evaluate this threat. The aims were to provide a meaningful overview of the literature relevant to the potential impact of plastic pollution and associated contaminants on freshwater daphnids as primary consumers. A critical evaluation of research gaps and perspectives is conducted to provide a comprehensive risk assessment of microplastic as a hazard to aquatic environments. We outlined the challenges and limitations to microplastic research in hampering better-focused investigations that could support the development of new plastic materials and/or establishment of new regulations.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Daphnia , Ecossistema , Monitoramento Ambiental , Água Doce , Substâncias Perigosas , Humanos , Invertebrados , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Environ Toxicol Chem ; 41(10): 2431-2443, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876442

RESUMO

Adverse impacts associated with the interactions of numerous endocrine-disruptor chemicals (EDCs) with estrogen receptor 1 play a pivotal role in reproductive dysfunction. The predictive studies on these interactions thus are crucial in the risk assessment of EDCs but rely heavily on the accuracy of specific protein structure in three dimensions. As the three-dimensional (3D) structure of zebrafish estrogen receptor 1 (zEsr1) is not available, the 3D structure of zEsr1 ligand-binding domain (zEsr1-LBD) was generated using MODELLER and its quality was assessed by the PROCHECK, ERRAT, ProSA, and Verify-3D tools. After the generated model was verified as reliable, bisphenol A and its analogs were docked on the zEsr1-LBD and human estrogen receptor 1 ligand-binding domain (hESR1-LBD) using the Discovery Studio and Autodock Vina programs. The molecular dynamics followed by molecular docking were simulated using the Nanoscale Molecular Dynamics program and compared to those of the in vitro reporter gene assays. Some chemicals were bound with an orientation similar to that of 17ß-estradiol in both models and in silico binding energies showed moderate or high correlations with in vitro results (0.33 ≤ r2 ≤ 0.71). Notably, hydrogen bond occupancy during molecular dynamics simulations exhibited a high correlation with in vitro results (r2 ≥ 0.81) in both complexes. These results show that the combined in silico and in vitro approaches is a valuable tool for identifying EDCs in different species, facilitating the assessment of EDC-induced reproductive toxicity. Environ Toxicol Chem 2022;41:2431-2443. © 2022 SETAC.


Assuntos
Disruptores Endócrinos , Receptor alfa de Estrogênio , Animais , Compostos Benzidrílicos , Disruptores Endócrinos/química , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Genes Reporter , Humanos , Ligantes , Simulação de Acoplamento Molecular , Fenóis , Especificidade da Espécie , Peixe-Zebra/metabolismo
9.
Front Toxicol ; 4: 887135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875696

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.

10.
Microbiol Res ; 262: 127097, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35751943

RESUMO

Haematococcus lacustris is a chlamydomonadalean with high biotechnological interest owing to its capacity to produce astaxanthin, a valuable secondary carotenoid with extraordinary antioxidation properties. However, its prolonged growth has limited its utility commercially. Thus, rapid growth to attain high densities of H. lacustris cells optimally producing astaxanthin is an essential biotechnological target to facilitate profitable commercialisation. Our study focused on characterising the bacterial communities associated with the alga's phycosphere by metagenomics. Subsequently, we altered the bacterial consortia in combined co-culture with key beneficial bacteria to optimise the growth of H. lacustris. The algal biomass increased by up to 2.1-fold in co-cultures, leading to a 1.6-fold increase in the astaxanthin yield. This study attempted to significantly improve the H. lacustris growth rate and biomass yield via Next-Generation Sequencing analysis and phycosphere bacterial augmentation, highlighting the possibility to overcome the hurdles associated with astaxanthin production by H. lacustris at a commercial scale.


Assuntos
Clorófitas , Microbiota , Aceleração , Bactérias/genética , Biomassa , Carotenoides
11.
Front Microbiol ; 13: 869332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558129

RESUMO

The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially. Considered as emerging contaminants, pharmaceuticals represent a challenge in the field of environmental remediation; therefore, alternative add-on systems for traditional wastewater treatment plants are continuously being developed to mitigate their impact and reduce their effects on the environment and human health. In this review, we describe the current status and impact of pharmaceutical compounds as emerging contaminants, focusing on their presence in water bodies, and analyzing the development of bioremediation systems, especially mycoremediation, for the removal of these pharmaceutical compounds with a special focus on fungal technologies.

12.
Chemosphere ; 296: 134037, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183583

RESUMO

Microplastics have been detected in several aquatic organisms, especially bivalves such as clams, oysters, and mussels. To understand the ecotoxicological implication of microplastic accumulation in biota, it is crucial to investigate effects at the physiological level to identify knowledge gaps regarding the threat posed to the environment and assist decision-makers to set the necessary priorities. Typically, xenobiotics elicit an overproduction of reactive oxygen species in organisms, resulting in oxidative stress and cellular damage when not combated by the antioxidative system. Therefore, the present study aimed to establish the impacts of microplastic particles and fibres on the freshwater basket clam Corbicula javanicus. We measured the oxidative stress responses following microplastic exposure as the specific activities of the antioxidative enzymes glutathione S-transferase and catalase. When exposed to polyester fibres from the fleece jackets, the enzyme activities increased in the clams, while the enzyme activities decreased with high-density polyethylene microplastic fragments from bottle caps. All the exposures showed that the adverse effects on the antioxidative response system were elicited, indicating the negative ecotoxicological implications of microplastic pollution.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Água Doce , Microplásticos , Estresse Oxidativo , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Environ Sci Pollut Res Int ; 29(12): 17580-17590, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34669136

RESUMO

Plastic waste is recognised as hazardous, with the risk increasing as the polymers break down in nature to secondary microplastics or even nanoplastics. The number of studies reporting on the prevalence of microplastic in every perceivable niche and bioavailable to biota is dramatically increasing. Knowledge of the ecotoxicology of microplastic is advancing as well; however, information regarding plants, specifically aquatic macrophytes, is still lacking. The present study aimed to gain more information on the ecotoxicological effects of six different polymer types as 4 mm microplastic on the morphology (germination and growth) and the physiology (catalase and glutathione S-transferase activity) of the rooted aquatic macrophyte, Nelumbo nucifera. The role of sediment was also considered by conducting all exposure both in a sediment-containing and sediment-free exposure system. Polyvinyl chloride and polyurethane exposures caused the highest inhibition of germination and growth compared to the control. However, the presence of sediment significantly decreased the adverse effects. Catalase activity was increased with exposure to polyvinyl chloride, polyurethane, and polystyrene, both in the presence and absence of sediment but more so in the sediment-free system. Glutathione S-transferase activity was significantly increased with exposure to polypropylene, polyvinyl chloride, and polyethylene terephthalate in the sediment-free system and exposure to polyethylene terephthalate and polyurethane in the absence of sediment. There was no clear correlation between the morphological and physiological effects observed. Further studies are required to understand the underlying toxicity mechanism of microplastics.


Assuntos
Lotus , Nelumbo , Poluentes Químicos da Água , Monitoramento Ambiental , Microplásticos/toxicidade , Plásticos , Polietileno , Polietilenotereftalatos , Polipropilenos , Poliestirenos , Poliuretanos , Cloreto de Polivinila , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Microorganisms ; 9(8)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34442662

RESUMO

The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and ß-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.

15.
Sci Total Environ ; 790: 148166, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091331

RESUMO

Plastic has been an environmental pollutant far longer than claimed by the first reports surfacing in 1979, meaning some plastic materials have been decaying in nature for decades. Nevertheless, the threat posed to biota is not fully understood, especially from aged microplastic. The question considered in this study was whether the adverse effects of new plastic differ from those of old plastic material. Therefore, the morphological and physiological effects on Lepidium sativum with exposure to both new and aged polycarbonate were considered against a known stressor leaching from polycarbonate with time, bisphenol-A. Exposure to new and short-term aged polycarbonate (up to 80 days) elicited the most severe effects such as germination inhibition, reduced seedling growth, decreased chlorophyll concentrations, and increased catalase activity. These adverse effects in L. sativum associated with polycarbonate exposure were reduced as a function of the ageing time applied to the polycarbonate. The chemical substances that lend new polycarbonate material its toxicity were likely leached with time during the ageing process. Based on the results obtained, temperature and humidity based artificial ageing significantly reduced the phytotoxicity of the microplastic particles.


Assuntos
Lepidium sativum , Microplásticos , Germinação , Estresse Oxidativo , Plásticos , Cimento de Policarboxilato
16.
Toxins (Basel) ; 12(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143228

RESUMO

The aquaculture industry in Brazil has grown immensely resulting in the production of inefficiently discarded wastewater, which causes adverse effects on the aquatic ecosystem. The efficient treatment of aquaculture wastewater is vital in reaching a sustainable and ecological way of fish farming. Bioremediation in the form of the Green Liver System employing macrophytes was considered as wastewater treatment for a tilapia farm, COOPVALE, in Itacuruba, Brazil, based on previously demonstrated success. A large-scale system was constructed, and the macrophytes Azolla caroliniana, Egeria densa, Myriophyllum aquaticum, and Eichhornia crassipes were selected for phytoremediation. As cyanobacterial blooms persisted in the eutrophic wastewater, two microcystin congeners (MC-LR and -RR) were used as indicator contaminants for system efficiency and monitored by liquid-chromatography-tandem-mass-spectrometry. Two trial studies were conducted to decide on the final macrophyte selection and layout of the Green Liver System. In the first trial, 58% MC-LR and 66% MC-RR were removed and up to 32% MC-LR and 100% MC-RR were removed in the second trial. Additional risks that were overcome included animals grazing on the macrophytes and tilapia were spilling over from the hatchery. The implementation of the Green Liver System significantly contributed to the bioremediation of contaminants from the fish farm.


Assuntos
Aquicultura , Cianobactérias/metabolismo , Monitoramento Ambiental , Toxinas Marinhas/análise , Microcistinas/análise , Traqueófitas/fisiologia , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise , Purificação da Água , Animais , Biodegradação Ambiental , Brasil , Cianobactérias/crescimento & desenvolvimento , Eichhornia/fisiologia , Gleiquênias/fisiologia , Proliferação Nociva de Algas , Humanos , Hydrocharitaceae/fisiologia , Saxifragales/fisiologia , Alimentos Marinhos , Tilápia , Microbiologia da Água
17.
Plants (Basel) ; 9(3)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156049

RESUMO

With the increase in environmental monitoring and assessing, we are gaining insight into the extent of microplastic pollution in our environment. The threat posed by microplastics to biota could come, e.g., from leached substances. As some plastic materials have been decaying in nature for extended periods already, the toxic effects of leaching compounds need to be investigated. It is furthermore essential to understand the adverse effects of new plastic and how these effects differ from the effects elicited by old plastic material. Therefore, in the present study, the effects of exposure to leachates from new and artificial aged polycarbonate as well as new and aged polycarbonate granules on various germination parameters of Lepidium sativum were studied. Germination, root, and shoot length, as well as the calculated germination rate index as a measure for germination speed, was negatively influenced in substrate-free and substrate containing exposures. From an ecological and agricultural point of view, this implies possible yield losses with less germinating seeds, slower plant germination speed, and smaller seedlings in general.

18.
Toxics ; 8(1)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075214

RESUMO

Microplastics (MPs) are emerging pollutants, which are considered ubiquitous in aquatic ecosystems. The effects of MPs on aquatic biota are still poorly understood, and consequently, there is a need to understand the impacts that MPs may pose to organisms. In the present study, Tubifex tubifex, a freshwater oligochaete commonly used as a bioindicator of the aquatic environment, was exposed to fluorescent polyethylene microspheres (up to 10 µm in size) to test whether the oxidative stress status was affected. The mortality rate of T. tubifex, as well as the activities of the oxidative stress status biomarker enzymes glutathione reductase and peroxidase, were assessed. In terms of oxidative stress, no significant differences between the exposure organisms and the corresponding controls were detected. Even though the data suggest that polyethylene MPs and the selected concentrations did not pose a critical risk to T. tubifex, the previously reported tolerance of T. tubifex to environmental pollution should be taken into account and thus MPs as aquatic pollutants could still represent a threat to more sensitive oligochetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA