Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(49): 6260-6263, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38722108

RESUMO

Although hydrogen peroxide (H2O2) has been highly used in nuclear chemistry for more than 75 years, the preparation and literature description of tetravalent actinide peroxides remain surprisingly scarce. A new insight is given in this topic through the synthesis and thorough structural characterization of a new peroxo compound of Pu(IV).

2.
Dalton Trans ; 52(29): 10023-10037, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37408368

RESUMO

Although ZrSiO4 is the most well-known compound in the zircon-structured family (space group I41/amd), the experimental conditions for preparing pure and well-crystallized phases that are doped with a tetravalent element via hydrothermal synthesis have never been clearly discussed in the literature. With the aim to answer this question, the experimental conditions of the preparation of ZrSiO4 and (Zr,Ce)SiO4 were investigated in order to synthesize well-crystallized and pure phases. A multiparametric study has been carried out using soft hydrothermal conditions with variables including reactant concentration, initial pH of the reactive medium, and duration of the hydrothermal treatment. Pure ZrSiO4 was obtained through hydrothermal treatment for 7 days at 250 °C, within a large acidity range (1.0 ≤ pH ≤ 9.0) and starting from CSi ≈ CZr ≥ 0.2 mol L-1. As hydrothermally prepared zircon structured phases can be both hydrated and hydroxylated, its annealed form was also studied after heating to 1000 °C. Based on these results, the synthesis of (Zr,Ce)SiO4 solid solutions was also investigated. The optimal hydrothermal conditions to acquire pure and crystallized phases were as follows: 7 days at 250 °C with initial pH = 1 and concentration of the reactants equal to 0.2 mol L-1. This led to Zr1-xCexSiO4 solid solutions with the incorporated Ce content up to 40 mol%. Samples were characterized using multiple methods, including laboratory and synchrotron PXRD, IR and Raman spectroscopies, SEM, and TGA. Moreover, it was found that these phases were thermally stable in air up to at least 1000 °C.

3.
Dalton Trans ; 51(17): 6976-6977, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35383801

RESUMO

Correction for 'Formation of plutonium(IV) silicate species in very alkaline reactive media' by Paul Estevenon et al., Dalton Trans., 2021, 50, 12528-12536, DOI: 10.1039/D1DT02248B.

4.
Dalton Trans ; 50(36): 12528-12536, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545888

RESUMO

Studying the speciation of Pu(IV) in very alkaline and silicate ion rich reactive media allowed identification of the formation of plutonium(IV)-silicate colloidal suspensions which were stable for months. These colloids were stabilized in aqueous solution for pH > 13 and for concentrations around 10-2 mol L-1. Successive filtration processes allowed evaluation of their size, which was found to be smaller than 6 nm. Their structural characterization by XAS evidenced that their structure was similar to those identified for the other tetravalent actinide-silicate colloidal systems like thorium, uranium and neptunium. Their formation could explain the increase of plutonium solubility usually observed in alkaline silicate-rich solutions and could affect the plutonium mobility as a result in contaminated sites or in other environmental permeable media.

5.
Inorg Chem ; 60(2): 718-735, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33393766

RESUMO

Orthosilicates adopt the zircon structure types (I41/amd), consisting of isolated SiO4 tetrahedra joined by A-site metal cations, such as Ce and U. They are of significant interest in the fields of geochemistry, mineralogy, nuclear waste form development, and material science. Stetindite (CeSiO4) and coffinite (USiO4) can be formed under hydrothermal conditions despite both being thermodynamically metastable. Water has been hypothesized to play a significant role in stabilizing and forming these orthosilicate phases, though little experimental evidence exists. To understand the effects of hydration or hydroxylation on these orthosilicates, in situ high-temperature synchrotron and laboratory-based X-ray diffraction was conducted from 25 to ∼850 °C. Stetindite maintains its I41/amd symmetry with increasing temperature but exhibits a discontinuous expansion along the a-axis during heating, presumably due to the removal of water confined in the [001] channels, which shrink against thermal expansion along the a-axis. Additional in situ high-temperature Raman and Fourier transform infrared spectroscopy also confirmed the presence of the confined water. Coffinite was also found to expand nonlinearly up to 600 °C and then thermally decompose into a mixture of UO2 and SiO2. A combination of dehydration and dehydroxylation is proposed for explaining the thermal behavior of coffinite synthesized hydrothermally. Additionally, we investigated high-temperature structures of two coffinite-thorite solid solutions, uranothorite (UxTh1-xSiO4), which displayed complex variations in composition during heating that was attributed to the negative enthalpy of mixing. Lastly, for the first time, the coefficients of thermal expansion of CeSiO4, USiO4, U0.46Th0.54SiO4, and U0.9Th0.1SiO4 were determined to be αV = 14.49 × 10-6, 14.29 × 10-6, 17.21 × 10-6, and 17.23 × 10-6 °C-1, respectively.

6.
Inorg Chem ; 59(18): 13174-13183, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32871073

RESUMO

Zircon (ZrSiO4, I41/amd) can accommodate actinides, such as thorium, uranium, and plutonium. The zircon structure has been determined for several of the end-member compositions of other actinides, such as plutonium and neptunium. However, the thermodynamic properties of these actinide zircon structure types are largely unknown due to the difficulties in synthesizing these materials and handling transuranium actinides. Thus, we have completed a thermodynamic study of cerium orthosilicate, stetindite (CeSiO4), a surrogate of PuSiO4. For the first time, the standard enthalpy of formation of CeSiO4 was obtained by high temperature oxide melt solution calorimetry to be -1971.9 ± 3.6 kJ/mol. Stetindite is energetically metastable with respect to CeO2 and SiO2 by 27.5 ± 3.1 kJ/mol. The metastability explains the rarity of the natural occurrence of stetindite and the difficulty of its synthesis. Applying the obtained enthalpy of formation of CeSiO4 from this work, along with those previously reported for USiO4 and ThSiO4, we developed an empirical energetic relation for actinide orthosilicates. The predicted enthalpies of formation of AnSiO4 are then determined with a discussion of future strategies for efficiently immobilizing Pu or minor actinides in the zircon structure.

7.
Dalton Trans ; 49(33): 11512-11521, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32840279

RESUMO

Thorite, (ThSiO4) with a zircon type structure, is one of the most abundant natural sources of thorium on Earth. Generally, actinides are known to form nanoparticles in silicate medium, though no direct link between those colloids and the crystalline form of thorite was evidenced until now. Here we show the formation of thorite from colloids and nanocrystalline structures under experimental conditions close to environmental pH and temperature. Through in situ small and wide angle X-ray scattering (SWAXS) measurements, colloids with a few nanometers in size were first evidenced at a low reaction time. These colloids have elongated shapes and finally tend to aggregate after their size has reached 10 nm. Once aggregated, the system goes through a maturation step, ending with the emergence of nanocrystallites as thorite zircon structures. This maturation step is longer when the reaction temperature is decreased which highlights the kinetic considerations. These results have potential implications on the paragenesis of Th mineral deposits and also in the behaviour of Th and, by analogy, tetravalent actinides in the environment. The significant characteristics of this work are that Th-silicate colloids were demonstrated at low temperatures and a near neutral pH with long-term stability and a morphology in favor of high mobility in groundwater. If these species are formed in more diluted media, this could be problematic owing to the spreading of Th and, by analogy, other tetravalent actinides in the environment.

8.
Dalton Trans ; 49(19): 6434-6445, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32355939

RESUMO

Attempts to synthesize plutonium(iv) silicate, PuSiO4, have been made on the basis of results recently reported in the literature for CeSiO4, ThSiO4, and USiO4 under hydrothermal conditions. Although it was not possible to prepare PuSiO4via applying the conditions reported for thorium and uranium, an efficient method of PuSiO4 synthesis was established by applying the conditions optimized for the CeSiO4 system. This method was based on the slow oxidation of plutonium(iii) silicate reactants under hydrothermal conditions at 150 °C in hydrochloric acid (pH = 3-4). These results shed new light on the potential behavior of plutonium in reductive environments, highlighting the representative nature of cerium surrogates when studying plutonium under such conditions and providing some important pieces of information regarding plutonium chemistry in silicate solutions.

9.
Dalton Trans ; 48(28): 10455-10463, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31241109

RESUMO

Although the preparation of CeSiO4 has been already reported, the formation of pure cerium silicate from aqueous precursors appears as a challenge. An innovative way of synthesis has been identified in this study, allowing the formation of CeSiO4 after hydrothermal treatment starting from Ce(iii) silicate precursors. Among the experimental parameters examined, significant effects were found according to the nature of the precursor and of the reactive media considered, the pH of the reactive media and the temperature of the hydrothermal process. This study allows the determination of optimized conditions for the hydrothermal synthesis of pure CeSiO4 (A-Ce2Si2O7 or Ce4.67(SiO4)3O as starting precursors, nitric medium, pH = 7, 7 days at 150 °C). The in situ low oxidation rate of Ce(iii) into Ce(iv) was a key parameter to consider in order to avoid the presence of CeO2 in the final mixtures.

10.
Dalton Trans ; 48(22): 7551-7559, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31119248

RESUMO

Even though CeSiO4 was synthesized one time through a hydrothermal treatment, the conditions leading to its formation remain largely unknown. In order to define the optimized conditions of synthesis, a multiparametric study was developed by varying the pH of the solution, the temperature, and the nature of the reactants and of the complexing ions in solution. This study highlighted that CeSiO4 could not be obtained starting from Ce(iv) reactants. An optimal set of conditions was defined to prepare single phase samples. Pure CeSiO4 was obtained through a hydrothermal treatment at 150 °C using a starting mixture of 1 mol L-1 Ce(iii) nitrate and Na2SiO3 solutions and by adjusting the initial pH to 8. The chemical limitations observed during the synthesis of CeSiO4 suggested that the formation of this phase may result from the slow in situ oxidation of a Ce(iii) silicate complex during the hydrothermal treatment.

11.
Inorg Chem ; 57(19): 12398-12408, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30221939

RESUMO

Multiparametric study of the hydrothermal synthesis of thorite, ThSiO4, was performed with the aim to determine the most efficient conditions to form single phase thorite samples. Among the experimental parameters investigated, temperature of the hydrothermal process, concentration of carbonate ions, thorium and silicon reactants, and pH of the reactive media significantly affect the composition of the final system obtained. Single phase samples of ThSiO4 were prepared in weakly basic reactive media and at temperatures over 150 °C, for thorium and silicate concentrations higher than 8 × 10-3 mol L-1 and carbonate concentrations of at least 8 × 10-2 mol L-1. Although the synthesis of thorite in carbonate media was already described in the literature, this study gives new insights to explain the key role of carbonate ions in the preparation of thorite. Especially, beyond their simple role of pH buffer, carbonate ions are involved in the formation of thorium-carbonate complexes at high pH, increasing the apparent solubility of thorium in weakly basic media. The presence of carbonate ions has an important impact not only on the domain of formation of thorite but also on the morphology of the silicate phase.

12.
Inorg Chem ; 57(15): 9393-9402, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29984579

RESUMO

A multiparametric study of the hydrothermal synthesis of ThSiO4, thorite, was performed with the aim of determining the most efficient conditions to form single-phase samples. Among the experimental parameters examined, significant effects were found for the concentration of reactants in the starting mixture, pH of the reactive media, and temperature of the hydrothermal process. Such parameters affected both the rate of formation of thorite and the morphology of the final products synthesized. Precipitation of pure ThSiO4 was obtained over a wide range of pH on going from CHNO3 = 0.3 mol L-1 to pH 9.1 with a yield of over 95%. Temperatures higher than 160 °C favor the formation of thorite. Finally, thorium and silicon concentrations above 2.1 × 10-3 mol L-1 are required to obtain pure thorium silicate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA