Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Rep ; 14(1): 9370, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653980

RESUMO

Culture of muscle cells from livestock species has typically involved laborious enzyme-based approaches that yield heterogeneous populations with limited proliferative and myogenic differentiation capacity, thus limiting their use in physiologically-meaningful studies. This study reports the use of a simple explant culture technique to derive progenitor cell populations from porcine muscle that could be maintained and differentiated long-term in culture. Fragments of semitendinosus muscle from 4 to 8 week-old piglets (n = 4) were seeded on matrigel coated culture dishes to stimulate migration of muscle-derived progenitor cells (MDPCs). Cell outgrowths appeared within a few days and were serially passaged and characterised using RT-qPCR, immunostaining and flow cytometry. MDPCs had an initial mean doubling time of 1.4 days which increased to 2.5 days by passage 14. MDPC populations displayed steady levels of the lineage-specific markers, PAX7 and MYOD, up until at least passage 2 (positive immunostaining in about 40% cells for each gene), after which the expression of myogenic markers decreased gradually. Remarkably, MDPCs were able to readily generate myotubes in culture up until passage 8. Moreover, a decrease in myogenic capacity during serial passaging was concomitant with a gradual increase in the expression of the pre-adipocyte markers, CD105 and PDGFRA, and an increase in the ability of MDPCs to differentiate into adipocytes. In conclusion, explant culture provided a simple and efficient method to harvest enriched myogenic progenitors from pig skeletal muscle which could be maintained long-term and differentiated in vitro, thus providing a suitable system for studies on porcine muscle biology and applications in the expanding field of cultured meat.


Assuntos
Diferenciação Celular , Músculo Esquelético , Células-Tronco , Animais , Suínos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Desenvolvimento Muscular , Células Cultivadas , Técnicas de Cultura de Células/métodos , Proliferação de Células , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo
2.
Front Vet Sci ; 10: 1180760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275605

RESUMO

Mesenchymal stem/stromal cells (MSCs) are used for regenerative therapy in companion animals. Their potential was initially attributed to multipotency, but subsequent studies in rodents, humans and veterinary species evidenced that MSCs produce factors that are key mediators of immune, anti-infective and angiogenic responses, which are essential in tissue repair. MSCs preparations have been classically obtained from bone marrow and adipose tissue (AT) in live animals, what requires the use of surgical procedures. In contrast, the uterus, which is naturally exposed to external insult and infection, can be accessed nonsurgically to obtain samples, or tissues can be taken after neutering. In this study, we explored the endometrium (EM) as an alternative source of MSCs, which we compared with AT obtained from canine paired samples. Canine AT- and EM-MSCs, formed CFUs when seeded at low density, underwent tri-lineage differentiation into adipocytes, osteocytes and chondrocytes, and expressed the CD markers CD73, CD90 and CD105, at equivalent levels. The immune genes IL8, CCL2 and CCL5 were equally expressed at basal levels by both cell types. However, in the presence of the inflammatory stimulus lipopolysaccharide (LPS), expression of IL8 was higher in EM- than in AT-MSCs (p < 0.04) while the other genes were equally elevated in both cell types (p < 0.03). This contrasted with the results for CD markers, where the expression was unaltered by exposing the MSCs to LPS. Overall, the results indicate that canine EM-MSCs could serve as an alternative cell source to AT-MSCs in therapeutic applications.

3.
Cureus ; 15(2): e34692, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36909031

RESUMO

Marchiafava-Bignami disease (MBD) is rare and often associated with chronic alcohol consumption; however, cases have been described in non-alcoholic patients with nutritional deficits. This disease manifests itself through an array of neurological signs and symptoms, from mild dysarthria or mild confusion to coma and death, and can present acutely, subacutely, or chronically, depending on their severity. The evolution of imaging technology makes magnetic resonance imaging (MRI) the gold standard for the diagnosis of this disease, although computed tomography (CT) scan is usually in the first line owing to its greater availability. The main feature for the diagnosis of MBD by brain MRI is the identification of areas of demyelination and necrosis of the corpus callosum. We report a 55-year-old male with subacute neurological deterioration whose MRI demonstrated atrophy and demyelination of the corpus callosum.

4.
Front Vet Sci ; 9: 1085747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524224
5.
Cureus ; 14(10): e30712, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36439595

RESUMO

Leptospirosis is an infection caused by Leptospira. Leptospirosis causes disease in humans mainly in developing countries and also in countries with poor housing and sanitation, due to animals (mainly rats) that are potential sources of contamination. The clinical manifestations and the severity of leptospirosis are highly variable. We present the case of a 56-year-old female that was admitted to the emergency department with a three-week history of fever (38.4ºC), headache, dyspnea, and cough. There was a worsening of the patient's clinical status with respiratory failure and the necessity of admission to the intensive care unit for respiratory support with mechanical ventilation. The treatment was initiated with piperacillin and tazobactam, azithromycin, and steroids. There was a favorable evolution, and the patient was transferred to the internal medicine ward after 12 days with a suspected diagnosis of small vessel vasculitis and pneumonia. In the medical ward, after a careful anamnesis, leptospirosis was suspected and confirmed. The aim of this case report is to highlight the importance of a good anamnesis and the fact that an elaborate clinical history helps to consider new diagnostic hypotheses. Also intends to alert to the existence of leptospirosis in developed countries, a disease underdiagnosed in these countries.

6.
J Physiol ; 600(7): 1771-1790, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081669

RESUMO

Intrauterine growth restriction (IUGR) is a leading cause of neonatal morbidity and mortality in humans and domestic animals. Developmental adaptations of skeletal muscle in IUGR lead to increased risk of premature muscle loss and metabolic disease in later life. Here, we identified ß-Klotho (KLB), a fibroblast growth factor 21 (FGF21) co-receptor, as a novel regulator of muscle development in IUGR. Using the pig as a naturally-occurring disease model, we performed transcriptome-wide profiling of fetal muscle (day 90 of pregnancy) from IUGR and normal-weight (NW) littermates. We found that, alongside large-scale transcriptional changes comprising multiple developmental, tissue injury and metabolic gene pathways, KLB was increased in IUGR muscle. Moreover, FGF21 concentrations were increased in plasma in IUGR fetuses. Using cultures of fetal muscle progenitor cells (MPCs), we showed reduced myogenic capacity of IUGR compared to NW muscle in vitro, as evidenced by differences in fusion indices and myogenic transcript levels, as well as mechanistic target of rapamycin (mTOR) activity. Moreover, transfection of MPCs with KLB small interfering RNA promoted myogenesis and mTOR activation, whereas treatment with FGF21 had opposite and dose-dependent effects in porcine and also in human fetal MPCs. In conclusion, our results identify KLB as a novel and potentially critical mediator of impaired muscle development in IUGR, through conserved mechanisms in pigs and humans. Our data shed new light onto the pathogenesis of IUGR, a significant cause of lifelong ill-health in humans and animals. KEY POINTS: Intrauterine growth restriction (IUGR) is associated with large-scale transcriptional changes in developmental, tissue injury and metabolic gene pathways in fetal skeletal muscle. Levels of the fibroblast growth factor 21 (FGF21) co-receptor, ß-Klotho (KLB) are increased in IUGR fetal muscle, and FGF21 concentrations are increased in IUGR fetal plasma. KLB mediates a reduction in muscle development through inhibition of mechanistic target of rapamycin signalling. These effects of KLB on muscle cells are conserved in pig and human, suggesting a vital role of this protein in the regulation of muscle development and function in mammals.


Assuntos
Retardo do Crescimento Fetal , Desenvolvimento Muscular , Animais , Feminino , Mamíferos , Músculo Esquelético/metabolismo , Gravidez , Transdução de Sinais , Suínos
7.
Cureus ; 14(12): e32508, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36654541

RESUMO

Coronavirus disease 2019 (COVID-19) is a pandemic that spread rapidly around the world, causing an enormous overload on the health systems of the different affected countries. Among the many different manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, an uncommon complication is the development of pneumomediastinum. In the clinical case presented, the patient was diagnosed with COVID-19 pneumonia and due to severe refractory hypoxemia, she was submitted to therapy with non-invasive ventilation (NIV). After initial stabilization and improvement, there was unexpected clinical deterioration and pneumomediastinum was diagnosed. The purpose of this report is to highlight the importance of considering pneumomediastinum as a complication of COVID-19 pneumonia in cases subjected to non-invasive ventilation.

8.
Food Chem ; 339: 128091, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152879

RESUMO

The discovery of melatonin (Mel) in wines triggered a new interest in the paradigm of health benefits and wine consumption, usually ascribed to trans-resveratrol (trans-RSV). In this context, a dispersive liquid-liquid microextraction for the analysis of Mel and trans-RSV in wines by LC-FLD was developed. A 26-1 factorial design was used to identify the significant variables (p < 0.05) and Central Composite Design was used to achieve the optimal conditions: 300 µL of chloroform (extracting solvent), 1500 µL of acetonitrile (disperser solvent) and 1500 mg of NaCl (ionic strength). Excellent linearity (R2 > 0.9999), repeatability (<3.55%), and accuracy (<7.18%) were obtained using a blank matrix and recoveries (>91.9%) using wines. The method was successfully applied to the analyses of Mel (0.63-7.44 ng mL-1) and trans-RSV (169-2616 ng mL-1) in different wine varieties. Comparison with literature point the overall advantages of the new method.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Análise de Alimentos/métodos , Microextração em Fase Líquida/métodos , Melatonina/análise , Resveratrol/análise , Vinho/análise , Melatonina/isolamento & purificação , Concentração Osmolar , Resveratrol/isolamento & purificação , Solventes/química , Fatores de Tempo
9.
Front Vet Sci ; 7: 558905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251256

RESUMO

Consistency in clinical outcomes is key to the success of therapeutic Mesenchymal Stem/Stromal cells (MSCs) in regenerative medicine. MSCs are used to treat both humans and companion animals (horses, dogs, and cats). The properties of MSC preparations can vary significantly with factors including tissue of origin, donor age or health status. We studied the effects of developmental programming associated with intrauterine growth restriction (IUGR) on MSC properties, particularly related to multipotency. IUGR results from inadequate uterine capacity and placental insufficiency of multifactorial origin. Both companion animals (horses, dogs, cats) and livestock (pigs, sheep, cattle) can be affected by IUGR resulting in decreased body size and other associated changes that can include, alterations in musculoskeletal development and composition, and increased adiposity. Therefore, we hypothesized that this dysregulation occurs at the level of MSCs, with the cells from IUGR animals being more prone to differentiate into adipocytes and less to other lineages such as chondrocytes and osteocytes compared to those obtained from normal animals. IUGR has consequences on health and performance in adult life and in the case of farm animals, on meat quality. In humans, IUGR is linked to increased risk of metabolic (type 2 diabetes) and other diseases (cardiovascular), later in life. Here, we studied porcine MSCs where IUGR occurs spontaneously, and shows features that recapitulate human IUGR. We compared the properties of adipose-derived MSCs from IUGR (IUGR-MSCs) and Normal (Normal-MSCs) new-born pig littermates. Both MSC types grew clonally and expressed typical MSC markers (CD105, CD90, CD44) at similar levels. Importantly, tri-lineage differentiation capacity was significantly altered by IUGR. IUGR-MSCs had higher adipogenic capacity than Normal-MSCs as evidenced by higher adipocyte content and expression of the adipogenic transcripts, PPARγ and FABP4 (P < 0.05). A similar trend was observed for fibrogenesis, where, upon differentiation, IUGR-MSCs expressed significantly higher levels of COL1A1 (P < 0.03) than Normal-MSCs. In contrast, chondrogenic and osteogenic potential were decreased in IUGR-MSCs as shown by a smaller chondrocyte pellet and osteocyte staining, and lower expression of SOX9 (P < 0.05) and RUNX2 (P < 0.02), respectively. In conclusion, the regenerative potential of MSCs appears to be determined prenatally in IUGR and this should be taken into account when selecting cell donors in regenerative therapy programmes both in humans and companion animals.

10.
Front Vet Sci ; 7: 564209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102568

RESUMO

Dairy cow farming plays an important role in the UK and worldwide economies. Significant challenges are currently being faced regarding sustainability of the dairy industry. Dairy cow subfertility remains an important issue limiting herd productivity, resulting in annual losses of hundreds of millions of pounds in the UK alone. To address this, accurate monitoring of reproductive status and early detection of fertility issues in individual cows is essential. The aim of this study was to gather farmer and veterinarian opinions on current practices and perceived gaps related to diagnosis of fertility issues and pregnancy testing in UK dairy farms. Using online questionnaires, data were collected and analyzed from a total of 40 farmers and 59 veterinarians. The results showed that non-seen bulling checks and ultrasound were the most frequent tools to detect fertility issues, and that most farmers tested post-calving, and often again before or during mating. Most farmers believed that current tests did not meet their expectations, with half of those being willing to pay more than they were currently paying for fertility testing. In regard to pregnancy testing, ultrasound was most commonly used, at 30-50 days post-insemination either in individual or groups of cows. Again, most farmers believed that current tests did not meet their expectations, and a majority would consider paying a higher cost for a test that was better than those currently available. In addition, a majority of farmers would consider using a test that could detect pregnancy within 2 weeks post-insemination, if such test existed, because they believed it would help improve their herds' reproductive performance. Overall, the opinions of farmers and veterinarians indicate that there is significant scope for improving dairy herd fertility monitoring practices in the UK, through development of improved assays that can diagnose pregnancy and infertility earlier, are less disruptive to farm operations and are more cost effective than available tools. They also provide useful information to guide the future development and implementation of better diagnostics for improving reproductive performance of dairy cattle.

11.
Front Vet Sci ; 7: 127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195277

RESUMO

Production diseases are highly prevalent in modern dairy herds, resulting in lost productivity and reduced animal welfare. Two important production diseases are mastitis and metabolic disorders. The availability of robust diagnostic tools that can detect animals at early stages of disease is crucial to prevent the high costs associated with lost productivity and the treatment of clinically and/or chronically diseased animals. Despite a variety of diagnostic methods being available to farmers and veterinarians, the incidence of these diseases in UK dairy herds has not changed over the last decade, underscoring the need for improved approaches for early disease detection. To this end, we administered a questionnaire to farmers and veterinarians to understand current diagnostic practices in the UK dairy cow sector, and to gather opinions on the suitability of currently available diagnostic tests in order to identify specific areas where improvement in diagnostic technologies and/or practices are needed. Data from a total of 34 farmers and 42 veterinarians were analyzed. Results indicated that most farmers surveyed used a combination of methods to diagnose mastitis and metabolic disorders, the most popular of which were visual inspection and milk recording somatic cell count data for mastitis, and body condition score and milk ketone testing for metabolic disorders. These preferences were not always in line with veterinarian recommendations of different diagnostic tools. Moreover, veterinarians indicated they were not satisfied with currently available diagnostic tools or how these were implemented by farmers. Both farmers and veterinarians recognized there was substantial room for improvement of current diagnostic tools, particularly in regard to the need to detect disease early. A majority of respondents preferred new diagnostic tests to be suitable for use with milk rather than blood or urine samples, and to yield results within 24 h. Finally, both groups surveyed identified economic cost as the most important barrier for the future uptake of new diagnostic technologies. The information obtained should guide the future development of diagnostic approaches that meet both the expectations of farmers and veterinarians, and help bring about a reduction in the incidence of production diseases in UK dairy herds.

12.
J Pediatr ; 220: 249-253, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31987650

RESUMO

There are few biomarkers to predict efficacy of glucocorticoid treatment in childhood acute lymphoblastic leukemia (ALL) at diagnosis. Here, we demonstrate reciprocal regulation of 11beta-hydroxysteroid dehydrogenase (11ß-HSD), may predict the apoptotic response of ALL to glucocorticoid treatment. Our data may be useful to refine glucocorticoid treatment, to retain benefit while minimizing side effects.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/fisiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/fisiologia , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prednisolona/uso terapêutico , Adolescente , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Resultado do Tratamento
13.
Reprod Biol Endocrinol ; 17(1): 41, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060561

RESUMO

Our previous studies showed that the miRNA clusters, miR-183-96-182 and miR-212-132, may be critical in promoting luteal cell survival and progesterone production in both bovine and humans. To further understand their involvement in luteal development, this study aimed to establish the expression of these miRNAs in different bovine luteal cell types, namely, endothelial and steroidogenic, isolated using fluorescence-activated cell sorting (FACS). We isolated each of the two cell populations based on the presence of the endothelia surface marker, CD144, and uptake of the lipophilic dye, Nile Red, respectively. Using quantitative Polymerase Chain Reaction (qPCR) in the sorted cell fractions we confirmed that CD144 and the endothelia-specific miRNA, miR-126, were predominantly expressed in endothelial cells (CD144+), whereas HSD3B1 was expressed predominantly in steroidogenic cells (Nile RedHI). Finally, we found that whereas the miR-212-132 cluster was expressed at similar levels in luteal endothelial and steroidogenic cells, miR-183-96-182 was expressed at > 4-fold higher levels in endothelial than in steroidogenic cells (P < 0.05), suggesting that these two miRNA clusters, and particularly miR-183-96-182, may be important in functionally regulating not only steroidogenic cells but also endothelial cells in the corpus luteum (CL).


Assuntos
Corpo Lúteo/metabolismo , MicroRNAs/metabolismo , Animais , Biomarcadores/metabolismo , Antígeno CD146/metabolismo , Bovinos , Corpo Lúteo/citologia , Células Endoteliais/metabolismo , Feminino , Citometria de Fluxo , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real
14.
Adv Exp Med Biol ; 1109: 67-77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30523590

RESUMO

Although pericytes have long been known for their roles in blood vessel regulation, it was not until a decade ago that their tissue regeneration potential began to be considered, after studies showed that pericytes were the in vivo counterparts of mesenchymal stem/stromal cells (MSCs). The prospective isolation and culture expansion of pericytes brought great excitement as it opened the way to the therapeutic use of well-defined cell populations with known regenerative potential to overcome concerns associated with the use of traditional MSC preparations. Studies first in humans and later in the horse and other domestic species showed that indeed cultured pericytes had key characteristics of MSCs, namely, their immunophenotype and the abilities to grow clonally and to differentiate into mature mesenchymal cells both in vitro and vivo. Several studies with human pericytes, and to a much lesser extent with animal pericytes, have also shown significant promise in tissue repair in different disease models. This review summarizes current knowledge on the tissue regeneration properties of pericytes from domestic animals and outlines future steps necessary for realizing their full potential both in clinical veterinary medicine and in preclinical testing of human therapies using large animal models, including the need for robust approaches for isolation, culture and appropriate in vivo testing of the tissue regenerative properties of pericytes in these species.


Assuntos
Pericitos/citologia , Regeneração , Animais , Diferenciação Celular , Modelos Animais de Doenças , Cavalos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia
15.
Cell Reprogram ; 20(5): 275-281, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30207795

RESUMO

Induced pluripotent stem cells (iPSCs) have revolutionized human biomedicine through their use in disease modeling and therapy. In comparison, little progress has been made toward the application of iPSCs in veterinary species. In that regard, skeletal myocytes from iPSCs would have great potential for understanding muscle function and disease in the equine athlete. In this study, we generated skeletal myotubes by transducing equine iPSC-derived mesenchymal derivatives with an inducible lentiviral vector coding for the human sequence of the myogenic factor, MyoD. Myosin heavy chain-positive myotubes generated from two different iPSC lines were compared to myotubes from adult equine skeletal muscle progenitor cells (MPCs). iPSC myotubes had a smaller mean area than MPC myotubes (≤2-fold). In addition, quantitative polymerase chain reaction analyses showed that iPSC myotubes expressed MYH2 and MYH3 isoforms (at similar or lower levels than MPC myotubes), but they did not express the mature muscle isoform, MYH1. Compared to MPC myotubes, iPSC myotubes expressed reduced levels of the myogenic factors, MYOD1 and MYF6, but did not express MYF5. Finally, iPSC myotubes responded to KCl-induced membrane depolarization by releasing calcium and did so in a manner similar to MPC myotubes. In conclusion, this is the first study to report the generation of functional myocytes from equine iPSCs.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Animais , Células Cultivadas , Cavalos
16.
Stem Cells Dev ; 27(21): 1518-1525, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30044182

RESUMO

Equine mesenchymal stem/stromal cells (MSCs) are multipotent cells that are widely used for treatment of musculoskeletal injuries, and there is significant interest in expanding their application to nonorthopedic conditions. MSCs possess antibacterial and immunomodulatory properties that may be relevant for combating infection; however, comparative studies using MSCs from different origins have not been carried out in the horse, and this was the focus of this study. Our results showed that MSC-conditioned media attenuated the growth of Escherichia coli, and that this effect was, on average, more pronounced for endometrium (EM)-derived and adipose tissue (AT)-derived MSCs than for bone marrow (BM)-derived MSCs. In addition, the antimicrobial lipocalin-2 was expressed at mean higher levels in EM-MSCs than in AT-MSCs and BM-MSCs, and the bacterial component lipopolysaccharide (LPS) stimulated its production by all three MSC types. We also showed that MSCs express interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1, chemokine ligand-5, and Toll-like receptor 4, and that, in general, these cytokines were induced in all cell types by LPS. Low expression levels of the macrophage marker colony-stimulating factor 1 receptor were detected in BM-MSCs and EM-MSCs but not in AT-MSCs. Altogether, these findings suggest that equine MSCs from EM, AT, and BM have both direct and indirect antimicrobial properties that may vary between MSCs from different origins and could be exploited toward improvement of regenerative therapies for horses.


Assuntos
Endométrio/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/microbiologia , Células-Tronco Multipotentes/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Tecido Adiposo/microbiologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Diferenciação Celular/genética , Proliferação de Células/genética , Endométrio/crescimento & desenvolvimento , Endométrio/microbiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cavalos/imunologia , Cavalos/microbiologia , Interleucina-6/genética , Interleucina-8/genética , Lipocalina-2/genética , Lipopolissacarídeos , Macrófagos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/microbiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor 4 Toll-Like/genética
17.
Theriogenology ; 116: 34-40, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29775846

RESUMO

Mesenchymal stem or stromal cells (MSCs) play key roles in tissue homeostasis. In the cyclic equine endometrium, this may be regulated by changes in serum concentrations of sex steroid hormones. This study was designed to investigate the changes in endometrial expression of MSC markers during reproductive cycles in mares and the influence of sex steroid hormones on endometrial MSC proliferation in vitro. Endometrial biopsies were collected from pony mares at different reproductive stages (estrus; day 5 and 13 after ovulation; seasonal anestrus; 20 h and 7days post-partum; n = 5 per stage) and were analyzed by RT-qPCR. MSC (CD29, CD44, CD73, CD90, CD105) and perivascular (CD146, NG2) markers were present in all samples irrespective of reproductive stage. Transcript levels of most markers were present at lowest levels on day 5 after ovulation and at 20 h post-partum. MSCs isolated from endometrial tissue (n = 6 mares) were cultured in the presence of progesterone (0.01-100 µM) and estradiol 17ß (0.1-1 µM), and cell proliferation was analyzed using alamarBlue® assay. Relative to cells incubated in steroid-depleted media, both progesterone and estradiol 17ß moderately increased cell proliferation (1.1- and 1.2-fold, respectively) independently of the concentration used. In conclusion, our results suggest that levels of MSC markers in equine endometrium dynamically change across reproductive cycles and that MSC populations are in part regulated by sex steroids.


Assuntos
Endométrio/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Cavalos/fisiologia , Células-Tronco Mesenquimais/metabolismo , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Endométrio/citologia , Endométrio/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Cavalos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Progesterona/farmacologia , RNA Mensageiro/metabolismo , Maturidade Sexual
18.
Stem Cell Res Ther ; 8(1): 166, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701175

RESUMO

BACKGROUND: Equine mesenchymal stromal/stem cells (MSCs) are most commonly harvested from bone marrow (BM) or adipose tissue, requiring the use of surgical procedures. By contrast, the uterus can be accessed nonsurgically, and may provide a more readily available cell source. While human endometrium is known to harbor mesenchymal precursor cells, MSCs have not been identified in equine endometrium. This study reports the isolation, culture, and characterization of MSCs from equine endometrium. METHODS: The presence of MSC and pericyte markers in endometrial sections was determined using immunohistochemistry. Stromal cells were harvested and cultured after separation of epithelial cells from endometrial fragments using Mucin-1-bound beads. For comparison, MSCs were also harvested from BM. The expression of surface markers in endometrial and BM-derived MSCs was characterized using flow cytometry and quantitative polymerase chain reaction. MSCs were differentiated in vitro into adipogenic, chondrogenic, osteogenic, and smooth muscle lineages. RESULTS: Typical markers of MSCs (CD29, CD44, CD90, and CD105) and pericytes (NG2 and CD146) were localized in the equine endometrium. Both endometrial and BM MSCs grew clonally and robustly expressed MSC and pericyte markers in culture while showing greatly reduced or negligible expression of hematopoietic markers (CD45, CD34) and MHC-II. Additionally, both endometrial and BM MSCs differentiated into adipogenic, osteogenic, and chondrogenic lineages in vitro, and endometrial MSCs had a distinct ability to undergo smooth muscle differentiation. CONCLUSIONS: We have demonstrated for the first time the presence of cells in equine endometrium that fulfill the definition of MSCs. The equine endometrium may provide an alternative, easily accessible source of MSCs, not only for therapeutic regeneration of the uterus, but also for other tissues where MSCs from other sources are currently being used therapeutically.


Assuntos
Separação Celular/métodos , Endométrio/citologia , Células-Tronco Mesenquimais/citologia , Animais , Antígenos de Diferenciação/metabolismo , Diferenciação Celular , Endométrio/metabolismo , Feminino , Cavalos , Células-Tronco Mesenquimais/metabolismo , Músculo Liso/citologia , Músculo Liso/metabolismo
19.
Stem Cells Dev ; 26(13): 964-972, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28376684

RESUMO

Mesenchymal stem/stromal cells (MSCs) have been used in human and equine regenerative medicine, and interest in exploiting their potential has increased dramatically over the years. Despite significant effort to characterize equine MSCs, the actual origin of these cells and how much of their native phenotype is maintained in culture have not been determined. In this study, we investigated the relationship between MSCs, derived from adipose tissue (AT) and bone marrow (BM), and pericytes in the horse. Both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD90, and CD73) markers were detected in equine AT and colocalized around blood vessels. Importantly, as assessed by flow cytometry, both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD44, CD90, and CD105) markers were present in a majority (≥90%) of cells in cultures of AT-MSCs and BM-MSCs; however, levels of pericyte markers were variable within each of those populations. Moreover, the expression of pericyte markers was maintained for at least eight passages in both AT-MSCs and BM-MSCs. Hematopoietic (CD45) and endothelial (CD144) markers were also detected at low levels in MSCs by quantitative polymerase chain reaction (qPCR). Finally, in coculture experiments, AT-MSCs closely associated with networks produced by endothelial cells, resembling the natural perivascular location of pericytes in vivo. Our results indicate that equine MSCs originate from perivascular cells and moreover maintain a pericyte-like phenotype in culture. Therefore, we suggest that, in addition to classical MSC markers, pericyte markers such as CD146 could be used when assessing and characterizing equine MSCs.


Assuntos
Tecido Adiposo/parasitologia , Células-Tronco Mesenquimais/metabolismo , Pericitos/metabolismo , Medicina Regenerativa , Tecido Adiposo/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Vasos Sanguíneos/metabolismo , Células da Medula Óssea/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Caderinas/genética , Caderinas/metabolismo , Técnicas de Cocultura , Citometria de Fluxo , Cavalos , Humanos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Fenótipo
20.
Stem Cell Res Ther ; 8(1): 80, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420427

RESUMO

BACKGROUND: In contrast to humans in which mesenchymal stem/stromal cell (MSC) therapies are still largely in the clinical trial phase, MSCs have been used therapeutically in horses for over 15 years, thus constituting a valuable preclinical model for humans. In human tissues, MSCs have been shown to originate from perivascular cells, namely pericytes and adventitial cells, which are identified by the presence of the cell surface markers CD146 and CD34, respectively. In contrast, the origin of MSCs in equine tissues has not been established, preventing the isolation and culture of defined cell populations in that species. Moreover, a comparison between perivascular CD146+ and CD34+ cell populations has not been performed in any species. METHODS: Immunohistochemistry was used to identify adventitial cells (CD34+) and pericytes (CD146+) and to determine their localization in relation to MSCs in equine tissues. Isolation of CD34+ (CD34+/CD146-/CD144-/CD45-) and CD146+ (CD146+/CD34-/CD144-/CD45-) cell fractions from equine adipose tissue was achieved by fluorescence-activated cell sorting. The isolated cell fractions were cultured and analyzed for the expression of MSC markers, using qPCR and flow cytometry, and for the ability to undergo trilineage differentiation. Angiogenic properties were analyzed in vivo using a chorioallantoic membrane (CAM) assay. RESULTS: Both CD34+ and CD146+ cells displayed typical MSC features, namely growth in uncoated tissue culture dishes, clonal growth when seeded at low density, expression of typical MSC markers, and multipotency shown by the capacity for trilineage differentiation. Of note, CD146+ cells were distinctly angiogenic compared with CD34+ and non-sorted cells (conventional MSCs), demonstrated by the induction of blood vessels in a CAM assay, expression of elevated levels of VEGFA and ANGPT1, and association with vascular networks in cocultures with endothelial cells, indicating that CD146+ cells maintain a pericyte phenotype in culture. CONCLUSION: This study reports for the first time the successful isolation and culture of CD146+ and CD34+ cell populations from equine tissues. Characterization of these cells evidenced their distinct properties and MSC-like phenotype, and identified CD146+ cells as distinctly angiogenic, which may provide a novel source for enhanced regenerative therapies.


Assuntos
Células-Tronco Mesenquimais/citologia , Cultura Primária de Células/veterinária , Tecido Adiposo/citologia , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Células Cultivadas , Cavalos , Células-Tronco Mesenquimais/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA