Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 749476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186785

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease which is currently treated by nifurtimox (NFX) and benznidazole (BZ). Nevertheless, the mechanism of action of NFX is not completely established. Herein, we show the protective effects of T. cruzi mitochondrial peroxiredoxin (MPX) in macrophage infections and in response to NFX toxicity. After a 3-day treatment of epimastigotes with NFX, MPX content increased (2.5-fold) with respect to control, and interestingly, an MPX-overexpressing strain was more resistant to the drug. The generation of mitochondrial reactive species and the redox status of the low molecular weight thiols of the parasite were not affected by NFX treatment indicating the absence of oxidative stress in this condition. Since MPX was shown to be protective and overexpressed in drug-challenged parasites, non-classical peroxiredoxin activity was studied. We found that recombinant MPX exhibits holdase activity independently of its redox state and that its overexpression was also observed in temperature-challenged parasites. Moreover, increased holdase activity (2-fold) together with an augmented protease activity (proteasome-related) and an enhancement in ubiquitinylated proteins was found in NFX-treated parasites. These results suggest a protective role of MPX holdase activity toward NFX toxicity. Trypanosoma cruzi has a complex life cycle, part of which involves the invasion of mammalian cells, where parasite replication inside the host occurs. In the early stages of the infection, macrophages recognize and engulf T. cruzi with the generation of reactive oxygen and nitrogen species toward the internalized parasite. Parasites overexpressing MPX produced higher macrophage infection yield compared with wild-type parasites. The relevance of peroxidase vs. holdase activity of MPX during macrophage infections was assessed using conoidin A (CA), a covalent, cell-permeable inhibitor of peroxiredoxin peroxidase activity. Covalent adducts of MPX were detected in CA-treated parasites, which proves its action in vivo. The pretreatment of parasites with CA led to a reduced infection index in macrophages revealing that the peroxidase activity of peroxiredoxin is crucial during this infection process. Our results confirm the importance of peroxidase activity during macrophage infection and provide insights for the relevance of MPX holdase activity in NFX resistance.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Macrófagos , Mamíferos , Nifurtimox/metabolismo , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Trypanosoma cruzi/metabolismo
2.
Redox Biol ; 46: 102085, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34454164

RESUMO

Trypanosoma cruzi is a flagellated protozoan that undergoes a complex life cycle between hematophagous insects and mammals. In humans, this parasite causes Chagas disease, which in thirty percent of those infected, would result in serious chronic pathologies and even death. Macrophages participate in the first stages of infection, mounting a cytotoxic response which promotes massive oxidative damage to the parasite. On the other hand, T. cruzi is equipped with a robust antioxidant system to repeal the oxidative attack from macrophages. This work was conceived to explicitly assess the role of mammalian cell-derived superoxide radical in a murine model of acute infection by T. cruzi. Macrophages derived from Nox2-deficient (gp91phox-/-) mice produced marginal amounts of superoxide radical and were more susceptible to parasite infection than those derived from wild type (wt) animals. Also, the lack of superoxide radical led to an impairment of parasite differentiation inside gp91phox-/- macrophages. Biochemical or genetic reconstitution of intraphagosomal superoxide radical formation in gp91phox-/- macrophages reverted the lack of control of infection. Along the same line, gp91phox-/- infected mice died shortly after infection. In spite of the higher lethality, parasitemia did not differ between gp91phox-/- and wt animals, recapitulating an observation that has led to conflicting interpretations about the importance of the mammalian oxidative response against T. cruzi. Importantly, gp91phox-/- mice presented higher and disseminated tissue parasitism, as evaluated by both qPCR- and bioimaging-based methodologies. Thus, this work supports that Nox2-derived superoxide radical plays a crucial role to control T. cruzi infection in the early phase of a murine model of Chagas disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Macrófagos , Camundongos , Estresse Oxidativo , Superóxidos
3.
Proc Natl Acad Sci U S A ; 116(18): 8879-8888, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30979807

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease (CD), contains exclusively Fe-dependent superoxide dismutases (Fe-SODs). During T. cruzi invasion to macrophages, superoxide radical (O2•-) is produced at the phagosomal compartment toward the internalized parasite via NOX-2 (gp91-phox) activation. In this work, T. cruzi cytosolic Fe-SODB overexpressers (pRIBOTEX-Fe-SODB) exhibited higher resistance to macrophage-dependent killing and enhanced intracellular proliferation compared with wild-type (WT) parasites. The higher infectivity of Fe-SODB overexpressers compared with WT parasites was lost in gp91-phox-/- macrophages, underscoring the role of O2•- in parasite killing. Herein, we studied the entrance of O2•- and its protonated form, perhydroxyl radical [(HO2•); pKa = 4.8], to T. cruzi at the phagosome compartment. At the acidic pH values of the phagosome lumen (pH 5.3 ± 0.1), high steady-state concentrations of O2•- and HO2• were estimated (∼28 and 8 µM, respectively). Phagosomal acidification was crucial for O2•- permeation, because inhibition of the macrophage H+-ATPase proton pump significantly decreased O2•- detection in the internalized parasite. Importantly, O2•- detection, aconitase inactivation, and peroxynitrite generation were lower in Fe-SODB than in WT parasites exposed to external fluxes of O2•- or during macrophage infections. Other mechanisms of O2•- entrance participate at neutral pH values, because the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid decreased O2•- detection. Finally, parasitemia and tissue parasite burden in mice were higher in Fe-SODB-overexpressing parasites, supporting the role of the cytosolic O2•--catabolizing enzyme as a virulence factor for CD.


Assuntos
Citosol/enzimologia , Macrófagos/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/toxicidade , Trypanosoma cruzi/enzimologia , Animais , Doença de Chagas/parasitologia , Regulação Enzimológica da Expressão Gênica , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Ácido Peroxinitroso/metabolismo , Fagossomos , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidade , Virulência
4.
Biochem J ; 475(7): 1235-1251, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438066

RESUMO

Chagas disease (CD), caused by the protozoa Trypanosoma cruzi, is a chronic illness in which parasites persist in the host-infected tissues for years. T. cruzi invasion in cardiomyocytes elicits the production of pro-inflammatory mediators [TNF-α, IL-1ß, IFN-γ; nitric oxide (·NO)], leading to mitochondrial dysfunction with increased superoxide radical (O2·-), hydrogen peroxide (H2O2) and peroxynitrite generation. We hypothesize that these redox mediators may control parasite proliferation through the induction of intracellular amastigote programmed cell death (PCD). In this work, we show that T. cruzi (CL-Brener strain) infection in primary cardiomyocytes produced an early (24 h post infection) mitochondrial dysfunction with H2O2 generation and the establishment of an oxidative stress evidenced by FoxO3 activation and target host mitochondrial protein expression (MnSOD and peroxiredoxin 3). TNF-α/IL-1ß-stimulated cardiomyocytes were able to control intracellular amastigote proliferation compared with unstimulated cardiomyocytes. In this condition leading to oxidant formation, an enhanced number of intracellular apoptotic amastigotes were detected. The ability of H2O2 to induce T. cruzi PCD was further confirmed in the epimastigote stage of the parasite. H2O2 treatment induced parasite mitochondrial dysfunction together with intra-mitochondrial O2·- generation. Importantly, parasites genetically engineered to overexpress mitochondrial Fe-superoxide dismutase (Fe-SODA) were more infective to TNF-α/IL-1ß-stimulated cardiomyocytes with less apoptotic amastigotes; this result underscores the role of this enzyme in parasite survival. Our results indicate that cardiomyocyte-derived diffusible mediators are able to control intracellular amastigote proliferation by triggering T. cruzi PCD and that parasite Fe-SODA tilts the process toward survival as part of an antioxidant-based immune evasion mechanism.


Assuntos
Doença de Chagas/parasitologia , Interações Hospedeiro-Parasita , Ferro/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Animais , Apoptose , Células Cultivadas , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/parasitologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Oxirredução , Ratos , Superóxido Dismutase/genética , Superóxidos , Trypanosoma cruzi/patogenicidade
5.
PLoS Negl Trop Dis ; 11(8): e0005852, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28832582

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, presents a variable clinical course, varying from asymptomatic to serious debilitating pathologies with cardiac, digestive or cardio-digestive impairment. Previous studies using two clonal T. cruzi populations, Col1.7G2 (T. cruzi I) and JG (T. cruzi II) demonstrated that there was a differential tissue distribution of these parasites during infection in BALB/c mice, with predominance of JG in the heart. To date little is known about the mechanisms that determine this tissue selection. Upon infection, host cells respond producing several factors, such as reactive oxygen species (ROS), cytokines, among others. Herein and in agreement with previous data from the literature we show that JG presents a higher intracellular multiplication rate when compared to Col1.7G2. We also showed that upon infection cardiomyocytes in culture may increase the production of oxidative species and its levels are higher in cultures infected with JG, which expresses lower levels of antioxidant enzymes. Interestingly, inhibition of oxidative stress severely interferes with the intracellular multiplication rate of JG. Additionally, upon H2O2-treatment increase in intracellular Ca2+ and oxidants were observed only in JG epimastigotes. Data presented herein suggests that JG and Col1.7G2 may sense extracellular oxidants in a distinct manner, which would then interfere differently with their intracellular development in cardiomyocytes.


Assuntos
Interações Hospedeiro-Parasita , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Oxidantes/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Antioxidantes/farmacologia , Cálcio/metabolismo , Respiração Celular , Células Cultivadas , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/parasitologia , Citocinas/biossíntese , Citocinas/imunologia , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/efeitos dos fármacos , Oxidantes/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Trypanosoma cruzi/classificação , Trypanosoma cruzi/fisiologia
6.
Proc Natl Acad Sci U S A ; 114(8): E1326-E1335, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28179568

RESUMO

The Trypanosoma cruzi ascorbate peroxidase is, by sequence analysis, a hybrid type A member of class I heme peroxidases [TcAPx-cytochrome c peroxidase (CcP)], suggesting both ascorbate (Asc) and cytochrome c (Cc) peroxidase activity. Here, we show that the enzyme reacts fast with H2O2 (k = 2.9 × 107 M-1⋅s-1) and catalytically decomposes H2O2 using Cc as the reducing substrate with higher efficiency than Asc (kcat/Km = 2.1 × 105 versus 3.5 × 104 M-1⋅s-1, respectively). Visible-absorption spectra of purified recombinant TcAPx-CcP after H2O2 reaction denote the formation of a compound I-like product, characteristic of the generation of a tryptophanyl radical-cation (Trp233•+). Mutation of Trp233 to phenylalanine (W233F) completely abolishes the Cc-dependent peroxidase activity. In addition to Trp233•+, a Cys222-derived radical was identified by electron paramagnetic resonance spin trapping, immunospin trapping, and MS analysis after equimolar H2O2 addition, supporting an alternative electron transfer (ET) pathway from the heme. Molecular dynamics studies revealed that ET between Trp233 and Cys222 is possible and likely to participate in the catalytic cycle. Recognizing the ability of TcAPx-CcP to use alternative reducing substrates, we searched for its subcellular localization in the infective parasite stages (intracellular amastigotes and extracellular trypomastigotes). TcAPx-CcP was found closely associated with mitochondrial membranes and, most interestingly, with the outer leaflet of the plasma membrane, suggesting a role at the host-parasite interface. TcAPx-CcP overexpressers were significantly more infective to macrophages and cardiomyocytes, as well as in the mouse model of Chagas disease, supporting the involvement of TcAPx-CcP in pathogen virulence as part of the parasite antioxidant armamentarium.


Assuntos
Heme/metabolismo , Parasitos/metabolismo , Parasitos/patogenicidade , Peroxidase/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Virulência/fisiologia , Animais , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Grupo dos Citocromos c/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transporte de Elétrons/fisiologia , Feminino , Peróxido de Hidrogênio/metabolismo , Cinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida/métodos , Oxirredução , Fenilalanina/metabolismo , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA