Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34683742

RESUMO

Additive manufacturing of casting cores and molds is state of the art in industrial application today. However, improving the properties of chemically bonded casting cores regarding temperature stability, bending strength, and surface quality is still a major challenge. The process of slurry-based 3D printing allows the fabrication of dense structures and therefore sinterable casting cores. This paper presents a study of the slurry-based fabrication of ceramic layer compounds focusing on the drying process and the achievable properties in slurry-based 3D printing of casting cores. This study aims at contributing to a better understanding of the interrelations between the drying conditions in the 3D printing process and the properties of sintered specimens relating thereto. The drying intensity influenced by an IR heater as well as the drying periods are varied for layer thicknesses of 50, 75, and 100 µm. Within this study, a process window applicable for 3D printing of sinterable casting cores is identified and further indications are given for optimization potentials. At layer heights of 75 µm, bending strengths between ~8 and 11 MPa as well as densities of around 50% of the theoretical density were achieved. Since the mean roughness depth Rz is determined to be <30 µm in plane, an application of slurry-based 3D printing in investment casting is conceivable.

2.
Materials (Basel) ; 14(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419146

RESUMO

Inorganically-bound core materials are used in foundries in high quantities. However, there is no validated mechanical failure criterion, which allows performing finite-element calculations on the core geometries, yet. With finite-element simulations, the cores could be optimised for various production processes from robotic core handling to the decoring process after the casting. To identify a failure criterion, we propose testing methods, that enable us to investigate the fracture behaviour of inorganically-bound core materials. These novel testing methods induce multiple bi-axial stress states into the specimens and are developed for cohesive frictional materials in general and for sand cores in particular. This allows validating failure criteria in principal stress space. We found that a Mohr-Coulomb model describes the fracture of inorganic core materials in a plane stress state quite accurately and adapted it to a failure criterion, which combines the Mohr-Coulomb model with the Weakest-Link theory in one consistent mechanical material model. This novel material model has been successfully utilised to predict the fracture force of a Brazilian test. This prediction is based on the stress fields of a finite element method (FEM) calculation.

3.
Materials (Basel) ; 13(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503107

RESUMO

Inorganically-bound sand cores are used in many light-metal foundries to form cavities in the cast part, which cannot be realised by the mould itself. To enable FEM simulations with core materials, their mechanical properties have to be measured. In this article, we adapt methods to determine the Young's and shear modulus, the Poisson ratio and the fracture strain of sand cores. This allows us to fully parametrise an ideal brittle FEM model. We found that the Young's and shear modulus can be obtained acoustically via the impulse excitation technique. The fracture strain was measured with a high-speed camera and a digital image correlation algorithm.

4.
Materials (Basel) ; 11(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453568

RESUMO

In this article, we study the fracture characteristics of inorganically-bound foundry cores. It will be shown that the fracture stress of inorganic cores follows Weibull's strength distribution function for brittle materials. Using three-point and four-point-bending experiments, the volume dependence of the bending fracture stress is analyzed and a Weibull model fitted. Furthermore, the fracture stress of arbitrary bending experiments can be calculated based on the Weibull parameters found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA