Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(4): e2306439, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036427

RESUMO

III-V quantum dots (QDs) have emerged as significant alternatives to Cd- and Pb-based QDs, garnering notable attention over the past two decades. However, the understanding of III-V QDs, particularly in the short wave-infrared (SWIR) region, remains limited. InAs QDs are widely recognized as the most prominent SWIR QDs, but their absorption beyond 1400 nm presents various challenges. Consequently, InSb QDs with relatively narrower bandgaps have been investigated; however, research on their device applications is lacking. In this study, InSb QDs are synthesized with absorption ranging from 1000 to 1700 nm by introducing Cl- ions to enhance QD surface stability during synthesis. Additionally, it coated InAs and ZnSe shells onto the InSb QDs to validate photoluminescence in the SWIR region and improve photostability. Subsequently, these QDs are employed in the fabrication of photodetector devices, resulting in photodetection above 1500 nm using Pb-free QDs. The photodetection device exhibited an external quantum efficiency (EQE) of 11.4% at 1370 nm and 6.3% at 1520 nm for InSb core QDs, and 4.6% at 1520 nm for InSb/InAs core/shell QDs, marking the successful implementation of such a device. In detail, the 1520 nm for InSb core device showed a dark current density(JD ) value of: 1.46 × 10-9 A/cm2 , responsivity(R): 0.078 A/W, and specific detectivity based on the shot noise(Dsh *): 3.6 × 1012 Jones at 0 V.

2.
J Hazard Mater ; 465: 133150, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128228

RESUMO

Amine derivatives are signature organic compounds generated from rotten protein food. Thus, sensitive detection of the presence of amines in protein foods can be a critical technique for monitoring their quality. In this study, we develop an organic chemosensor probe, 4-(2-(3-(dicyanomethylene)- 5,5-dimethylcyclohex-1-en-1-yl)vinyl)-N,N-diethylbenzenaminium chloride (DEAH), to effectively detect amines through discernible bimodal (colorimetric and fluorometric) changes. By exploiting the amine-triggered intramolecular charge transfer behavior, DEAH exhibits rapid color changes (<1 s) with an excellent detection limit (36.9 nM) and also fluorescence turn-on in response to amine gas. Moreover, it possesses detection capabilities in versatile conditions, including solutions, solids, and coated films, suggesting its practical applicability. In particular, DEAH shows dramatic color change from yellow to violet with exceptional color difference (△Eab) over 98, repeatable usability, and excellent selectivity to amines. Based on these compelling advantages, we successfully demonstrate real-time monitoring of amine gas generated from spoiled protein foods using DEAH-coated films.


Assuntos
Aminas , Colorimetria , Colorimetria/métodos , Fluorometria , Alimentos , Espectrometria de Fluorescência
3.
ACS Nano ; 17(19): 18792-18804, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37781927

RESUMO

Recently, the development of non-fullerene acceptors (NFAs) for near-infrared (NIR) organic photodetectors (OPDs) has attracted great interest due to their excellent NIR light absorption properties. Herein, we developed NFAs by substituting an electron-donating moiety (branched alkoxy thiophene (BAT)) asymmetrically (YOR1) and symmetrically (YOR2) for the Y6 framework. YOR1 exhibited nanoscale phase separation in a film blended with PTB7-Th. Moreover, substituting the BAT unit effectively extended the absorption wavelengths of YOR1 over 1000 nm by efficient intramolecular charge transfer and extension of the conjugation length. Consequently, YOR1-OPD exhibited significantly reduced dark current and improved responsivity by simultaneously satisfying optimal nanomorphology and significant suppression of charge recombination, resulting in 1.98 × 1013 and 3.38 × 1012 Jones specific detectivity at 950 and 1000 nm, respectively. Moreover, we successfully demonstrated the application of YOR1-OPD in highly sensitive photoplethysmography sensors using NIR light. This study suggests a strategic approach for boosting the overall performance of NIR OPDs targeting a 1000 nm light signal using an all-in-one (optimal morphology, suppressed dark current, and extended NIR absorption wavelength) NFA.

4.
iScience ; 25(5): 104194, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35479416

RESUMO

Sensitive detection of near-infrared (NIR) light is applicable to variety of optical, chemical, and biomedical sensors. Of these diverse applications, NIR photodetectors have been used as a key component for photoplethysmography (PPG) sensors. In particular, because NIR organic photodetectors (OPDs) enable fabrication of stretchable and skin-conformal PPG sensors, they are attaining tremendously increasing interest in both academia and industry. Herein, we report strain-durable and highly sensitive NIR OPDs using an organic bulk heterojunction (BHJ) layer. For effective suppression of dark current, we employed BHJ combination consisting of PTB7-Th:Y6 which forms high energy barrier against transport-injected holes. The optimized OPDs exhibited high specific detectivity up to 2.2 × 1012 Jones at 800 nm. By constructing the devices on the parylene substrates, we successfully demonstrated stretchable NIR OPDs and high-performance skin-conformal PPG sensors.

5.
ACS Appl Mater Interfaces ; 13(9): 11144-11150, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33624502

RESUMO

Near-infrared organic photodetectors (NIR OPDs) have attracted considerable attention because of their inherent advantages such as a tailorable light absorption property, low-cost fabrication, compatibility with flexible substrates, and room-temperature operation. In particular, the development of NIR detection between 900 and 950 nm is crucial for noise-free communication in ambient environments. In this work, we demonstrate high-detectivity NIR OPDs at 900-950 nm by employing a non-fullerene acceptor (ITIC) used with an NIR-absorbing conjugated polymer (PNIR) for bulk heterojunction (BHJ), which significantly suppressed dark current. Systemic characterizations including electrical, structural, and morphological analyses revealed that ITIC effectively reduces charge recombination during the operation of the OPDs under NIR illumination, resulting in a dark current reduction and high detectivity of over 3.2 × 1011 Jones at 900-950 nm. The results presented here demonstrate that utilizing a non-fullerene acceptor for BHJ-type NIR OPDs is evidently a strategic approach for the simultaneous achievement of the low dark current and high-detectivity of NIR OPDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA