Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Hand Surg Am ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38180412

RESUMO

PURPOSE: The aim of this prospective, randomized, controlled, double-blinded pilot study was to determine the rates of post-traumatic osteoarthritis and assess joint space width in the presence or absence of a single intra-articular injection of corticosteroid after an acute, intra-articular distal radius fracture (DRF). METHODS: Forty patients received a single, intra-articular, radiocarpal joint injection of 4 mg of dexamethasone (DEX) (n = 19) or normal saline placebo (n = 21) within 2 weeks of a surgically or nonsurgically treated intra-articular DRF. The primary outcome measure was minimum radiocarpal joint space width (mJSW) on noncontrast computed tomography scans at 2 years postinjection. Secondary outcomes were obtained at 3 months, 6 months, 1 year, and 2 years postinjection and included Disabilities of the Arm, Shoulder, and Hand; Michigan Hand Questionnaire; Patient-Rated Wrist Evaluation; wrist range of motion; and grip strength. RESULTS: At 2-year follow-up, there was no difference in mean mJSW between the DEX group (2.2 mm; standard deviation, 0.6; range, 1.4-3.2) and the placebo group (2.3 mm; standard deviation, 0.7; range, 0.9-3.9). Further, there were no differences in any secondary outcome measures at any postinjection follow-up interval. CONCLUSIONS: Radiocarpal joint injection of corticosteroid within 2 weeks of an intra-articular DRF does not appear to affect the development of post-traumatic osteoarthritis within 2 years follow-up in a small pilot cohort. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic II.

2.
bioRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986862

RESUMO

Osteoarthritis (OA) is a degenerative joint disease and a leading cause of disability worldwide. Aging is a major risk factor for OA, but the specific mechanisms underlying this connection remain unclear. Although chondrocytes rarely divide in adult articular cartilage, they undergo replicative senescence in vitro which provides an opportunity to study changes related to aging under controlled laboratory conditions. In this pilot study, we performed bulk RNA sequencing on early- and late-passage human articular chondrocytes to identify transcriptomic changes associated with cellular aging. Chondrocytes were isolated from the articular cartilage of three donors, two with OA (age 70-80 years) and one with healthy cartilage (age 26 years). Chondrocytes were serially passaged until replicative senescence and RNA extracted from early- and late-passage cells. Principal component analysis of all genes showed clear separation between early- and late-passage chondrocytes, indicating substantial age-related differences in gene expression. Differentially expressed genes (DEGs) analysis confirmed distinct transcriptomic profiles between early- and late-passage chondrocytes. Hierarchical clustering revealed contrasting expression patterns between the two isolates from osteoarthritic samples and the healthy sample. Focused analysis of DEGs on transcripts associated with turnover of the extra-cellular matrix and the senescence-associated secretory phenotype (SASP) showed consistent downregulation of Col2A1 and ACAN, and upregulation of MMP19, ADAMTS4, and ADAMTS8 in late passage chondrocytes across all samples. SASP components including IL-1α, IL-1ß, IL-6, IL-7, p16INK4A (CDKN2A) and CCL2 demonstrated significant upregulation in late passage chondrocytes originally isolated from OA samples. Pathway analysis between sexes with OA revealed shared pathways such as extracellular matrix (ECM) organization, collagen formation, skeletal and muscle development, and nervous system development. Sex-specific differences were observed, with males showing distinctions in ECM organization, regulation of the cell cycle process as well as neuron differentiation. In contrast, females exhibited unique variations in the regulation of the cell cycle process, DNA metabolic process, and the PID-PLK1 pathway.

3.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239902

RESUMO

MicroRNAs (miRNAs) are short non-coding RNA sequences with the ability to inhibit the expression of a target mRNA at the post-transcriptional level, acting as modulators of both the degenerative and regenerative processes. Therefore, these molecules constitute a potential source of novel therapeutic tools. In this study, we investigated the miRNA expression profile that presented in enthesis tissue upon injury. For this, a rodent enthesis injury model was developed by creating a defect at a rat's patellar enthesis. Following injury, explants were collected on days 1 (n = 10) and 10 (n = 10). Contra lateral samples (n = 10) were harvested to be used for normalization. The expression of miRNAs was investigated using a "Fibrosis" pathway-focused miScript qPCR array. Later, target prediction for the aberrantly expressed miRNAs was performed by means of the Ingenuity Pathway Analysis, and the expression of mRNA targets relevant for enthesis healing was confirmed using qPCRs. Additionally, the protein expression levels of collagens I, II, III, and X were investigated using Western blotting. The mRNA expression pattern of EGR1, COL2A1, RUNX2, SMAD1, and SMAD3 in the injured samples indicated their possible regulation by their respective targeting miRNA, which included miR-16, -17, -100, -124, -133a, -155 and -182. Furthermore, the protein levels of collagens I and II were reduced directly after the injury (i.e., day 1) and increased 10 days post-injury, while collagens III and X showed the opposite pattern of expression.


Assuntos
MicroRNAs , Ratos , Animais , MicroRNAs/metabolismo , Roedores/metabolismo , Cicatrização/genética , Patela , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica
4.
Mol Ther Methods Clin Dev ; 29: 350-363, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214314

RESUMO

Bone morphogenetic protein-2 (BMP-2) is an osteogenic protein used clinically to enhance bone healing. However, it must be applied in very high doses, causing adverse side effects and increasing costs while providing only incremental benefit. Preclinical models of bone healing using gene transfer to deliver BMP-2 suggest that transgenic BMP-2 is much more osteogenic than rhBMP-2. Using a reporter mesenchymal cell line, we found transgenic human BMP-2 cDNA to be at least 100-fold more effective than rhBMP-2 in signaling. Moreover, a substantial portion of the BMP-2 produced by the transduced cells remained cell associated. Signaling by transgenic BMP-2 occurred via binding to the type I receptor, activating the associated kinase and generating phospho-smads. Signaling was partially resistant to noggin, an important extracellular inhibitor of BMP-2, possibly because nascent BMP-2 binds to its cell surface receptor during secretion and thus signals in a protected peri-cellular environment. Although the amounts of BMP-2 secreted by the transduced cells were too low to affect distant cells, transduced cells were able to induce signaling in a paracrine fashion that required close proximity of the cells, possibly cell-to-cell contact. The greater osteogenic potency of transgenic BMP-2 was confirmed with human bone marrow stromal cells.

5.
Adv Exp Med Biol ; 1402: 95-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37052849

RESUMO

Delivering genes to chondrocytes offers new possibilities both clinically, for treating conditions that affect cartilage, and in the laboratory, for studying the biology of chondrocytes. Advances in gene therapy have created a number of different viral and non-viral vectors for this purpose. These vectors may be deployed in an ex vivo fashion, where chondrocytes are genetically modified outside the body, or by in vivo delivery where the vector is introduced directly into the body; in the case of articular and meniscal cartilage in vivo delivery is typically by intra-articular injection. Ex vivo delivery is favored in strategies for enhancing cartilage repair as these can be piggy-backed on existing cell-based technologies, such as autologous chondrocyte implantation, or used in conjunction with marrow-stimulating techniques such as microfracture. In vivo delivery to articular chondrocytes has proved more difficult, because the dense, anionic, extra-cellular matrix of cartilage limits access to the chondrocytes embedded within it. As Grodzinsky and colleagues have shown, the matrix imposes strict limits on the size and charge of particles able to diffuse through the entire depth of articular cartilage. Empirical observations suggest that the larger viral vectors, such as adenovirus (~100 nm), are unable to transduce chondrocytes in situ following intra-articular injection. However, adeno-associated virus (AAV; ~25 nm) is able to do so in horse joints. AAV is presently in clinical trials for arthritis gene therapy, and it will be interesting to see whether human chondrocytes are also transduced throughout the depth of cartilage by AAV following a single intra-articular injection. Viral vectors have been used to deliver genes to the intervertebral disk but there has been little research on gene transfer to chondrocytes in other cartilaginous tissues such as nasal, auricular or tracheal cartilage.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Animais , Cavalos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Injeções Intra-Articulares
6.
J Orthop Res ; 41(9): 1934-1944, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850029

RESUMO

This study defined and compared the course of native, impaired and growth factor-stimulated bone regeneration in a rat femoral defect model. A mid-diaphyseal defect with rigid internal fixation was surgically created in the right femur of male Fischer rats and serially analyzed over 36 weeks. Native bone regeneration was modeled using a sub-critical, 1 mm size defect, which healed uneventfully. Critical size defects of 5 mm were used to analyze impaired bone regeneration. In a third group, the 5 mm defects were filled with 11 µg of recombinant human bone morphogenetic protein 2 (rhBMP2) impregnated onto an absorbable collagen sponge, modeling its clinical use. Native bone regeneration was characterized by endochondral ossification with progressive remodeling to ultimately resemble intact femora. An endochondral response was also observed under conditions of impaired bone regeneration, but by week 8 medullary capping occurred with fibrofatty consolidation of the tissue within the defect, resembling an atrophic non-union. rhBMP2 treatment was associated with prolonged inflammatory cytokine expression and rapid intramembranous bone formation occurring with reduced expression of cartilage-associated collagens. Between weeks 4 and 36, rhBMP2-treated bones demonstrated decreased trabecular number and increased trabecular separation, which resulted in inferior mechanical properties compared with bones that healed naturally. Clinical Significance: Recombinant human bone morphogenetic protein 2 (rhBMP2) is used clinically to promote healing of long bones. Our data suggest that it drives intramembraneous ossification producing an inferior regenerate that deteriorates with time. Clinical outcomes would be improved by technologies favoring endochondral regenerative ossification.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Ratos , Humanos , Masculino , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/uso terapêutico , Cicatrização , Fêmur , Osteogênese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
7.
Gene Ther ; 30(7-8): 587-591, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260797

RESUMO

Osteoarthritis (OA) is a leading cause of disability with no cure and only supportive therapy. Adeno-associated virus (AAV) serotype 2.5 is being used in a Phase I clinical trial to deliver the interleukin-1 receptor antagonist into knee joints with OA. Neutralizing antibodies (Nab) directed against AAV2.5, if present, could inhibit gene transfer. Here, we report the prevalence of AAV2.5 Nab in the sera and synovial fluids of patients with OA. Nab titers were measured by their ability to inhibit in vitro transduction by AAV2.5 encoding GFP. Of 44 synovial fluids from patients with mid-stage and advanced OA, 43% had undetectable Nab; 25% had low titers (<1:100), 16% had medium titers (1:100-1:1000) and 16% had high titers (>1:1000) of Nab. Titers of AAV2.5 Nabs correlated with those of AAV2, but not with those of AAV5. Serum titers of AAV2.5 Nab correlated positively with titers in synovial fluid, and were never less than the matched synovial fluid titers. These findings suggest that high titers of Nab against AAV2.5 are uncommon in the synovial fluids of patients with OA, and individuals with high synovial fluid Nab titers can be identified by measuring titers in the serum.


Assuntos
Anticorpos Neutralizantes , Osteoartrite , Humanos , Líquido Sinovial , Anticorpos Antivirais , Prevalência , Vetores Genéticos/genética , Terapia Genética , Osteoartrite/terapia , Dependovirus/genética
8.
Curr Opin Rheumatol ; 35(1): 37-43, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508307

RESUMO

PURPOSE OF REVIEW: To assess the present status of gene therapy for osteoarthritis (OA). RECENT FINDINGS: An expanding list of cDNAs show therapeutic activity when introduced into the joints of animals with experimental models of OA. In vivo delivery with adenovirus or adeno-associated virus is most commonly used for this purpose. The list of encoded products includes cytokines, cytokine antagonists, enzymes, enzyme inhibitors, growth factors and noncoding RNA. Elements of CRISPR-Cas have also been delivered to mouse knees to ablate key genes. Several human trials have been initiated, using transgenes encoding transforming growth factor-ß1, interleukin-1 receptor antagonist, interferon-ß, the NKX3.2 transcription factor or variant interleukin-10. The first of these, using ex vivo delivery with allogeneic chondrocytes, gained approval in Korea which was subsequently retracted. However, it is undergoing Phase III clinical trials in the United States. The other trials are in Phase I or II. No gene therapy for OA has current marketing approval in any jurisdiction. SUMMARY: Extensive preclinical data support the use of intra-articular gene therapy for treating OA. Translation is beginning to accelerate and six gene therapeutics are in clinical trials. Importantly, venture capital has begun to flow and at least seven companies are developing products. Significant progress in the future can be expected.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Osteoartrite/terapia , Osteoartrite/tratamento farmacológico , Terapia Genética , Condrócitos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Citocinas/metabolismo , Cartilagem Articular/metabolismo
9.
Mol Ther ; 31(2): 420-434, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36245128

RESUMO

An estimated 100,000 patients each year in the United States suffer severe disability from bone defects that fail to heal, a condition where bone-regenerative therapies could provide substantial clinical benefits. Although recombinant human bone morphogenetic protein-2 (rhBMP2) is an osteogenic growth factor that is clinically approved for this purpose, it is only effective when used at exceedingly high doses that incur substantial costs, induce severe inflammation, produce adverse side effects, and form morphologically abnormal bone. Using a validated rat femoral segmental defect model, we show that bone formed in response to clinically relevant doses of rhBMP2 is accompanied by elevated expression of interleukin-1 (IL-1). Local delivery of cDNA encoding the IL-1 receptor antagonist (IL-1Ra) achieved bridging of segmental, critical size defects in bone with a 90% lower dose of rhBMP2. Unlike use of high-dose rhBMP2, bone formation in the presence of IL-1Ra occurred via the native process of endochondral ossification, resulting in improved quality without sacrificing the mechanical properties of the regenerated bone. Our results demonstrate that local immunomodulation may permit effective use of growth factors at lower doses to recapitulate more precisely the native biology of healing, leading to higher-quality tissue regeneration.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Osteogênese , Humanos , Ratos , Animais , Osteogênese/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Regeneração Óssea/genética , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia
10.
Methods Mol Biol ; 2598: 289-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355299

RESUMO

Viral gene transfer, known as transduction, is a powerful research tool for studying the biology of chondrocytes in novel ways and also a technology enabling the use of gene therapy for regenerating cartilage and treating diseases that affect cartilage, such as osteoarthritis. Adenovirus, retrovirus, lentivirus, and adeno-associated virus (AAV) are most commonly used to transduce chondrocytes. Although AAV is able to transduce chondrocytes in situ by intra-articular injection, chondrocytes are most commonly transduced in monolayer culture using the four vectors mentioned above. Protocols for achieving this are described, along with a discussion of the variables that can influence transduction efficiency.


Assuntos
Cartilagem Articular , Condrócitos , Condrócitos/fisiologia , Transdução Genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Dependovirus/genética , Terapia Genética/métodos , Genes Virais
11.
Osteoarthr Cartil Open ; 4(2)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36338933

RESUMO

Objective: To evaluate a single-step, gene-based procedure for repairing osteochondral lesions. Design: Osteochondral lesions were created in the patellar groove of skeletally mature rabbits. Autologous bone marrow aspirates were mixed with adenovirus vectors carrying cDNA encoding green fluorescent protein (Ad.GFP) or transforming growth factor-ß1 (Ad.TGF-ß1) and allowed to clot. The clotted marrow was press-fit into the defects. Animals receiving Ad.GFP were euthanized at 2 weeks and intra-articular expression of GFP examined by fluorescence microscopy. Animals receiving Ad.TGF-ß1 were euthanized at 3 months and 12 months; repair was compared to empty defects using histology and immunohistochemistry. Complementary in vitro experiments assessed transgene expression and chondrogenesis in marrow clots and fibrin gels. In a subsequent pilot study, repair at 3 months using a fibrin gel to encapsulate Ad.TGF-ß1 was evaluated. Results: At 2 weeks, GFP expression was seen at variable levels within the cartilaginous lesion. At 3 months, there was no statistically significant improvement (p > 0.05) in healing of lesions receiving Ad.TGF-ß1 and variability was high. At 12 months, there were still no significant difference (p > 0.05) between the empty defects and those receiving Ad.TGF-ß1 in the overall, cartilage, and bone scores. Variability was still high. In vitro experiments suggested that variability reflected variable transduction efficiency and chondrogenic activity of the marrow clots; using fibrin gels instead of marrow may address this issue but more research is needed. Conclusions: This approach to improving the repair of osteochondral lesions needs further refinement to reduce variability and provide a more robust outcome.

12.
Biomater Adv ; 139: 213027, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882120

RESUMO

The hematoma that forms between broken fragments of bone serves as a natural fibrin scaffold, and its removal from the defect site delays bone healing. The hypothesis of this study is that the microarchitectural and mechanical properties of the initially formed hematoma has a significant effect on the regulation of the biological process, which ultimately determines the outcome of bone healing. To mimic three healing conditions in the rat femur (normal, delayed, and non-healing bone defects), three different defect sizes of 0.5, 1.5, and 5.0 mm, are respectively used. The analysis of 3-day-old hematomas demonstrates clear differences in fibrin clot micro-architecture in terms of fiber diameter, fiber density, and porosity of the formed fibrin network, which result in different mechanical properties (stiffness) of the hematoma in each model. Those differences directly affect the biological processes involved. Specifically, RNA-sequencing reveals almost 700 differentially expressed genes between normally healing and non-healing defects, including significantly up-regulated essential osteogenic genes in normally healing defects, also differences in immune cell populations, activated osteogenic transcriptional regulators as well as potential novel marker genes. Most importantly, this study demonstrates that the healing outcome has already been determined during the hematoma phase of bone healing, three days post-surgery.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Animais , Fibrina , Consolidação da Fratura/genética , Hematoma/genética , Osteogênese/genética , Ratos
13.
Front Bioeng Biotechnol ; 10: 901317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837555

RESUMO

In orthopaedics, gene-based treatment approaches are being investigated for an array of common -yet medically challenging- pathologic conditions of the skeletal connective tissues and structures (bone, cartilage, ligament, tendon, joints, intervertebral discs etc.). As the skeletal system protects the vital organs and provides weight-bearing structural support, the various tissues are principally composed of dense extracellular matrix (ECM), often with minimal cellularity and vasculature. Due to their functional roles, composition, and distribution throughout the body the skeletal tissues are prone to traumatic injury, and/or structural failure from chronic inflammation and matrix degradation. Due to a mixture of environment and endogenous factors repair processes are often slow and fail to restore the native quality of the ECM and its function. In other cases, large-scale lesions from severe trauma or tumor surgery, exceed the body's healing and regenerative capacity. Although a wide range of exogenous gene products (proteins and RNAs) have the potential to enhance tissue repair/regeneration and inhibit degenerative disease their clinical use is hindered by the absence of practical methods for safe, effective delivery. Cumulatively, a large body of evidence demonstrates the capacity to transfer coding sequences for biologic agents to cells in the skeletal tissues to achieve prolonged delivery at functional levels to augment local repair or inhibit pathologic processes. With an eye toward clinical translation, we discuss the research progress in the primary injury and disease targets in orthopaedic gene therapy. Technical considerations important to the exploration and pre-clinical development are presented, with an emphasis on vector technologies and delivery strategies whose capacity to generate and sustain functional transgene expression in vivo is well-established.

14.
Cells ; 11(11)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681447

RESUMO

The use of multiphasic scaffolds to treat injured tendon-to-bone entheses has shown promising results in vitro. Here, we used two versions of a biphasic silk fibroin scaffold to treat an enthesis defect created in a rat patellar model in vivo. One version presented a mixed transition between the bony and the tendon end of the construct (S-MT) while this transition was abrupt in the second version (S-AT). At 12 weeks after surgery, the S-MT scaffold promoted better healing of the injured enthesis, with minimal undesired ossification of the insertion area. The expression of tenogenic and chondrogenic markers was sustained for longer in the S-MT-treated group and the tangent modulus of the S-MT-treated samples was similar to the native tissue at 12 weeks while that of the S-AT-treated enthesis was lower. Our study highlights the important role of the transition zone of multiphasic scaffolds in the treatment of complex interphase tissues such as the tendon-to-bone enthesis.


Assuntos
Fibroínas , Traumatismos dos Tendões , Alicerces Teciduais , Cicatrização , Animais , Fibroínas/farmacologia , Interfase , Ratos , Tendões
15.
Sci Adv ; 8(7): eabl6242, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171668

RESUMO

Large segmental osseous defects heal poorly. Recombinant, human bone morphogenetic protein-2 (rhBMP-2) is used clinically to promote bone healing, but it is applied at very high doses that cause adverse side effects and raise costs while providing only incremental benefit. We describe a previously unexplored, alternative approach to bone regeneration using chemically modified messenger RNA (cmRNA). An optimized cmRNA encoding BMP-2 was delivered to critical-sized femoral osteotomies in rats. The cmRNA remained orthotopically localized and generated BMP locally for several days. Defects healed at doses ≥25 µg of BMP-2 cmRNA. By 4 weeks, all animals treated with 50 µg of BMP-2 cmRNA had bridged bone defects without forming the massive callus seen with rhBMP-2. Moreover, such defects recovered normal mechanical strength quicker and initiated bone remodeling faster. cmRNA regenerated bone via endochondral ossification, whereas rhBMP-2 drove intramembranous osteogenesis; cmRNA provides an innovative, safe, and highly translatable technology for bone healing.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Fêmur , Osteogênese , RNA Mensageiro/genética , Ratos , Proteínas Recombinantes/farmacologia , Cicatrização
16.
J Histochem Cytochem ; 69(10): 633-643, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34549650

RESUMO

Collagen has a major role in the structural organization of tendons. Picrosirius red (PSR) staining viewed under polarized light microscopy is the standard method to evaluate the organization of collagen fibers in tissues. It is also used to distinguish between type I and type III collagen in tissue sections. However, accurate analysis and interpretation of PSR images are challenging because of technical factors and historical misconceptions. The aim of this study was to clarify whether collagen types I and III can be distinguished by PSR staining in rat Achilles tendons, using double immunohistochemistry as the positive control. Our findings showed that PSR staining viewed with polarized light microscopy was suitable for qualitative and quantitative assessment of total collagen but was not able to distinguish collagen types. We found it critical to use a polarizing microscope equipped with a rotating stage; tendon section orientation at 45° with respect to crossed polarizers was optimal for the qualitative and quantitative assessment of collagen organization. Immunohistochemistry was superior to PSR staining for detection of collagen type III. We also compared formalin and Bouin solution as fixatives. Both produced similar birefringence, but formalin-fixed tendons provided higher quality histological detail with both hematoxylin-eosin and immunostaining.


Assuntos
Compostos Azo/química , Colágeno Tipo III/análise , Colágeno Tipo I/análise , Coloração e Rotulagem , Tendões/química , Animais , Ratos , Ratos Sprague-Dawley
17.
JBJS Rev ; 9(8)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34437305

RESUMO

¼: Orthopaedics pioneered the expansion of gene therapy beyond its traditional scope of diseases that are caused by rare single-gene defects. Orthopaedic applications of gene therapy are most developed in the areas of arthritis and regenerative medicine, but several additional possibilities exist. ¼: Invossa, an ex vivo gene therapeutic for osteoarthritis, was approved in South Korea in 2017, but its approval was retracted in 2019 and remains under appeal; a Phase-III clinical trial of Invossa has restarted in the U.S. ¼: There are several additional clinical trials for osteoarthritis and rheumatoid arthritis that could lead to approved gene therapeutics for arthritis. ¼: Bone-healing and cartilage repair are additional areas that are attracting considerable research; intervertebral disc degeneration and the healing of ligaments, tendons, and menisci are other applications of interest. Orthopaedic tumors, genetic diseases, and aseptic loosening are additional potential targets. ¼: If successful, these endeavors will expand the scope of gene therapy from providing expensive medicines for a few patients to providing affordable medicines for many.


Assuntos
Artrite Reumatoide , Degeneração do Disco Intervertebral , Ortopedia , Osteoartrite , Terapia Genética , Humanos , Degeneração do Disco Intervertebral/terapia , Osteoartrite/genética , Osteoartrite/terapia
18.
Transl Res ; 236: 1-16, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33964474

RESUMO

Although gene therapy has its conceptual origins in the treatment of Mendelian disorders, it has potential applications in regenerative medicine, including bone healing. Research into the use of gene therapy for bone healing began in the 1990s. Prior to this period, the highly osteogenic proteins bone morphogenetic protein (BMP)-2 and -7 were cloned, produced in their recombinant forms and approved for clinical use. Despite their promising osteogenic properties, the clinical usefulness of recombinant BMPs is hindered by delivery problems that necessitate their application in vastly supraphysiological amounts. This generates adverse side effects, some of them severe, and raises costs; moreover, the clinical efficacy of the recombinant proteins is modest. Gene delivery offers a potential strategy for overcoming these limitations. Our research has focused on delivering a cDNA encoding human BMP-2, because the recombinant protein is Food and Drug Administration approved and there is a large body of data on its effects in people with broken bones. However, there is also a sizeable literature describing experimental results obtained with other transgenes that may directly or indirectly promote bone formation. Data from experiments in small animal models confirm that intralesional delivery of BMP-2 cDNA is able to heal defects efficiently and safely while generating transient, local BMP-2 concentrations 2-3 log orders less than those needed by recombinant BMP-2. The next challenge is to translate this information into a clinically expedient technology for bone healing. Our present research focuses on the use of genetically modified, allografted cells and chemically modified messenger RNA.


Assuntos
Osso e Ossos/patologia , Terapia Genética , Cicatrização , Aloenxertos/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Proteína Morfogenética Óssea 2/farmacologia , Osso e Ossos/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Cicatrização/efeitos dos fármacos
19.
PLoS One ; 15(8): e0237479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790806

RESUMO

OBJECTIVE: As native cartilage consists of different phenotypical zones, this study aims to fabricate different types of neocartilage constructs from collagen hydrogels and human mesenchymal stromal cells (MSCs) genetically modified to express different chondrogenic factors. DESIGN: Human MSCs derived from bone-marrow of osteoarthritis (OA) hips were genetically modified using adenoviral vectors encoding sex-determining region Y-type high-mobility-group-box (SOX) 9, transforming growth factor beta (TGFB) 1 or bone morphogenetic protein (BMP) 2 cDNA, placed in type I collagen hydrogels and maintained in serum-free chondrogenic media for three weeks. Control constructs contained unmodified MSCs or MSCs expressing GFP. The respective constructs were analyzed histologically, immunohistochemically, biochemically, and by qRT-PCR for chondrogenesis and hypertrophy. RESULTS: Chondrogenesis in MSCs was consistently and strongly induced in collagen I hydrogels by the transgenes SOX9, TGFB1 and BMP2 as evidenced by positive staining for proteoglycans, chondroitin-4-sulfate (CS4) and collagen (COL) type II, increased levels of glycosaminoglycan (GAG) synthesis, and expression of mRNAs associated with chondrogenesis. The control groups were entirely non-chondrogenic. The levels of hypertrophy, as judged by expression of alkaline phosphatase (ALP) and COL X on both the protein and mRNA levels revealed different stages of hypertrophy within the chondrogenic groups (BMP2>TGFB1>SOX9). CONCLUSIONS: Different types of neocartilage with varying levels of hypertrophy could be generated from human MSCs in collagen hydrogels by transfer of genes encoding the chondrogenic factors SOX9, TGFB1 and BMP2. This technology may be harnessed for regeneration of specific zones of native cartilage upon damage.


Assuntos
Proteína Morfogenética Óssea 2/genética , Hidrogéis/química , Fatores de Transcrição SOX9/genética , Fator de Crescimento Transformador beta1/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Cartilagem/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese/genética , Colágeno Tipo I/química , Colágeno Tipo X/genética , Meios de Cultura Livres de Soro/química , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , RNA Mensageiro/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
20.
Arch Phys Med Rehabil ; 101(5): 917-923, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035141

RESUMO

The growing field of regenerative rehabilitation has great potential to improve clinical outcomes for individuals with disabilities. However, the science to elucidate the specific biological underpinnings of regenerative rehabilitation-based approaches is still in its infancy and critical questions regarding clinical translation and implementation still exist. In a recent roundtable discussion from International Consortium for Regenerative Rehabilitation stakeholders, key challenges to progress in the field were identified. The goal of this article is to summarize those discussions and to initiate a broader discussion among clinicians and scientists across the fields of regenerative medicine and rehabilitation science to ultimately progress regenerative rehabilitation from an emerging field to an established interdisciplinary one. Strategies and case studies from consortium institutions-including interdisciplinary research centers, formalized courses, degree programs, international symposia, and collaborative grants-are presented. We propose that these strategic directions have the potential to engage and train clinical practitioners and basic scientists, transform clinical practice, and, ultimately, optimize patient outcomes.


Assuntos
Medicina Regenerativa/tendências , Reabilitação/tendências , Certificação , Congressos como Assunto , Currículo , Bolsas de Estudo , Humanos , Medicina Regenerativa/educação , Reabilitação/educação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA