RESUMO
The outspread of bacterial pathogens causing severe infections and spreading rapidly, especially among hospitalized patients, is worrying and represents a global public health issue. Current disinfection techniques are becoming insufficient to counteract the spread of these pathogens because they carry multiple antibiotic-resistance genes. For this reason, a constant need exists for new technological solutions that rely on physical methods rather than chemicals. Nanotechnology support provides novel and unexplored opportunities to boost groundbreaking, next-gen solutions. With the help of plasmonic-assisted nanomaterials, we present and discuss our findings in innovative bacterial disinfection techniques. Gold nanorods (AuNRs) immobilized on rigid substrates are utilized as efficient white light-to-heat transducers (thermoplasmonic effect) for photo-thermal (PT) disinfection. The resulting AuNRs array shows a high sensitivity change in refractive index and an extraordinary capability in converting white light to heat, producing a temperature change greater than 50 °C in a few minute interval illumination time. Results were validated using a theoretical approach based on a diffusive heat transfer model. Experiments performed with a strain of Escherichia coli as a model microorganism confirm the excellent capability of the AuNRs array to reduce the bacteria viability upon white light illumination. Conversely, the E. coli cells remain viable without white light illumination, which also confirms the lack of intrinsic toxicity of the AuNRs array. The PT transduction capability of the AuNRs array is utilized to produce white light heating of medical tools used during surgical treatments, generating a temperature increase that can be controlled and is suitable for disinfection. Our findings are pioneering a new opportunity for healthcare facilities since the reported methodology allows non-hazardous disinfection of medical devices by simply employing a conventional white light lamp.
Assuntos
Escherichia coli , Nanotubos , Humanos , Desinfecção/métodos , Nanotubos/química , Luz , Ouro/químicaRESUMO
Two-wave mixing adaptive interferometer based on a liquid crystal light valve with a semiconductor GaAs substrate is realized and studied at 1064 nm wavelength. The local response of the dynamic hologram recorded in the liquid crystal layer of the light valve allows for detection of small phase modulations of the object beam. The characteristics of the interferometer are estimated experimentally. The temporal adaptability lies in the subsecond range. The large optical nonlinearity of the cell is favorable for measurements of small displacements with high sensitivity.
RESUMO
This study theoretically investigated light reflection and transmission in a system composed of a thin metal layer (Ag) adjacent to a rugate filter (RF) having a harmonic refractive index profile. Narrow dips in reflectance and peaks in transmittance in the RF band gap were obtained due to the excitation of a Tamm plasmon polariton (TPP) at the Ag-RF interface. It is shown that the spectral position and magnitude of the TPP dips/peaks in the RF band gap depend on the harmonic profile parameters of the RF refractive index, the metal layer thickness, and the external medium refractive index. The obtained dependences for reflectance and transmittance allow selecting parameters of the system which can be optimized for various applications.
RESUMO
Multi-layered metamaterial structures show promise in a wide variety of optical applications such as superlenses, electromagnetic cloaking, tunable filters, sensors, and spatial light modulators. Optical transmission analysis of multilayer metallo-dielectric stacks with overall thickness less than the wavelength of light can be modeled using effective medium theory and the Berreman matrix method. For multilayer anisotropic stacks of arbitrary thickness, a rigorous 4 × 4 transfer matrix embodiment is typically used. In this work, a 2 × 2 anisotropic transfer matrix method is developed to analyze optical propagation through multilayer uniaxial stacks of arbitrary thicknesses. Optical transmission of a multilayer silver-zinc oxide stack deposited on a quartz substrate is modeled with this 2 × 2 anisotropic transfer matrix method and reconciled with experimental observations. Results indicate that this numerical approach is applicable to in situ assessment of the complex refractive indices of constituent metal and dielectric layers. Additionally, the anisotropic 2 × 2 transfer matrix method enables the possibility of modeling the transmission of the same metallo-dielectric structure deposited on an electro-optic, uniaxial substrate. Simulation results predict that adjusting the bias field across the substrate results in an electrically tunable transmission filter.
RESUMO
Planar cholesteric liquid crystals (CLCs) are well known for having vibrant reflective coloration that is associated with the handedness and the pitch length of the helicoidal twist of the liquid crystalline molecules. If one observes these films at oblique angles, the reflected colors blue-shift with increasing angles from normal. On the other hand, uniform lying helix (ULH) CLCs, where the helicoidal axis lies in the plane of the substrate, are well-known but are not typically associated with vibrant colors. Here, we examine the unique optical properties of CLCs at oblique incidence angles, specifically the spectral and polarization changes associated with switching between planar and ULH CLCs for various incidence angles. At small angles of incidence (0° < ψ < 45°, where ψ is the angle of incidence relative to the surface normal at the substrate-CLC interface), the electrically driven helical reorientation from planar to ULH results in a blue-shifting of the color and circularly polarized to unpolarized switching behavior. At large angles (45° < ψ < 90°), the behavior is reversed, with a red-shifting color change occurring and the polarization switching from unpolarized to circularly polarized. Modeling of the light propagation through ULH CLCs is used to confirm the change in position and polarization characteristic of the reflection band with incidence angle observed experimentally. This study provides a new perspective on ULH CLCs and reveals a unique reconfigurable angular chromaticity.
RESUMO
Predicting and mitigating impacts of climate change and development within the boreal biome requires a sound understanding of factors influencing the abundance, distribution, and population dynamics of species inhabiting this vast biome. Unfortunately, the limited accessibility of the boreal biome has resulted in sparse and spatially biased sampling, and thus our understanding of boreal bird population dynamics is limited. To implement effective conservation of boreal birds, a cost-effective approach to sampling the boreal biome will be needed. Our objective was to devise a sampling scheme for monitoring boreal birds that would improve our ability to model species-habitat relationships and monitor changes in population size and distribution. A statistically rigorous design to achieve these objectives would have to be spatially balanced and hierarchically structured with respect to ecozones, ecoregions and political jurisdictions. Therefore, we developed a multi-stage hierarchically structured sampling design known as the Boreal Optimal Sampling Strategy (BOSS) that included cost constraints, habitat stratification, and optimization to provide a cost-effective alternative to other common monitoring designs. Our design provided similar habitat and spatial representation to habitat stratification and equal-probability spatially balanced designs, respectively. Not only was our design able to achieve the desired habitat representation and spatial balance necessary to meet our objectives, it was also significantly less expensive (1.3-2.6 times less) than the alternative designs we considered. To further balance trade-offs between cost and representativeness prior to field implementation, we ran multiple iterations of the BOSS design and selected the one which minimized predicted costs while maximizing a multi-criteria evaluation of representativeness. Field implementation of the design in three vastly different regions over three field seasons showed that the approach can be implemented in a wide variety of logistical scenarios and ecological conditions. We provide worked examples and scripts to allow our approach to be implemented or adapted elsewhere. We also provide recommendations for possible future refinements to our approach, but recommend that our design now be implemented to provide unbiased information to assess the status of boreal birds and inform conservation and management actions.
Assuntos
Aves/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Animais , Humanos , Dinâmica Populacional , Estações do Ano , TaigaRESUMO
The reflection and transmission coefficients of an indium tin oxide (ITO) nanoribbongrating placed between a nematic liquid crystal (LC) layer and an isotropic dielectric medium arecalculated in the infrared region. Reflection and transmission spectra in the range of 1-5 µm relatedto the surface plasmon excitation in the ITO nanoribbons are obtained. Dependence of the peakspectral position on the grating spacing, the ribbon aspect ratio, and the 2D electron concentrationin the nanoribbons is studied. It is shown that director reorientation in the LC layer influences theplasmon spectra of the grating, enabling a control of both the reflection and transmission of thesystem. The data obtained with our model are compared to the results obtained using COMSOLsoftware, giving the similar results.
RESUMO
Farmland bird populations have declined with increasing agricultural intensification possibly due to putative reductions in prey insects and effects of pesticide exposure. Presence of agriculture may be especially relevant for aerial insectivorous songbirds whose primary diet is flying insects. Here, we investigated the effects of agricultural land use on nestling body condition, an important determinant of post-fledging survival, for barn swallows (Hirundo rustica), an aerial insectivore breeding within an agro-ecosystem in southern Ontario, Canada. Our scale-of-effect analysis revealed that nestling and pre-fledging body condition varied most strongly with the proportion of row crop within 100 m of the natal barn. Unexpectedly, this correlation was positive for both nestling body condition (2016 only) and for pre-fledging condition (2016 and 2017). We found a weak positive effect of row crop on number of young fledged. We speculate that the positive effects of agricultural row-cropping on condition and number of young fledged was due to higher prey availability and/or more open foraging habitat around barns surrounded by row crops. Alternatively, higher nestling condition in high agriculture environments could reflect an insurance policy to increase survival during the post-fledging period. Our results suggest that, in our southern Ontario study area, the degree of agricultural conversion does not negatively influence individual nestling condition and number of young produced for barn swallows. We recommend future research on this species to examine reproductive success in more intense agricultural landscapes and possible effects of pesticide exposure.
Assuntos
Andorinhas , Agricultura , Animais , Ecossistema , Ontário , Aves CanorasRESUMO
It is generally accepted that chemically synthesized nanoparticles lose their ferroelectricity (spontaneous polarization) as the particles become smaller. In contrast, ball-milled ferroelectric nanoparticles have an enhanced ferroelectric response at remarkably small sizes (≤10 nm). Although prior theory suggests that surface stress influences ferroelectricity, the source of such a stress and how it physically influences ferroelectricity in zero-dimensional nanoparticles has remained a mystery. In this paper, we demonstrate that the top-down approach of wet ball-milling not only results in fragmented materials on the nanoscale, but it also is responsible for a mechanochemical synthesis of metal carboxylates forming at the nanoparticles' surface. We prove that the presence of such a compound with a particular type of binding mode chemisorbed at the nanoparticles' surface is responsible for producing surface stress. This surface stress results in a stabilization and dramatic enhancement of the spontaneous polarization, which is 5 times greater than that of the bulk material and 650 times greater than what is measured in materials fabricated using standard chemical synthesis techniques. The results of this study have further led to the development of a new process that produces ferroelectric nanoparticles (≤10 nm) with uniform shape and size using a combination of wet chemistry and mechanochemical synthesis.
RESUMO
A chiral nematic (N*) liquid crystal (LC) was hybridized with a z-cut iron doped lithium niobate (Fe:LN) substrate and exposed with a focused continuous wave diode laser beam. The N* LC layer was confined with a cover glass to provide a homogeneous LC layer thickness. Two distinct kinds of test cells were investigated, one with an uncoated glass covering slip and one with an indium tin oxide (ITO) coated cover glass. Photo generated electric fields (generated in the Fe:LN) resulted in a localized defect formation and textural transitions in the N* LC. Due to field confinement, the field induced responses were more localized in samples with ITO coated cover glasses. By scanning the laser beam on programmed trajectories, formation of persistent patterns could be achieved in the N* LC layer. Polarized optical microscopy of the exposed samples revealed that these patterns consisted of adjacent circular Frank-Pryce defects. Exposure with a slightly defocused laser beam could be applied selectively to erase these patterns. Thus, a promising method is reported to generate reconfigurable patterns, photonic motives, and touch sensitive devices in a hybridized N* LC with micron accuracy.
RESUMO
Light-induced modulations of the refractive index and pattern formation are desirable to generate complex photonic structures via exposure to light. Here we show that local modulations of the effective refractive index and reconfigurable defects can be locally induced in a hybridized thin birefringent film of a nematic liquid crystal (LC) on a photoresponsive (generating photoinduced electric fields) iron doped lithium niobate surface via exposure to a focused laser beam. Samples were studied with a tailored imaging approach, which provided the ability to investigate these optically excited, field-induced responses on a microscopic level. Upon exposure with a focused laser beam, the fluent LC was expanded on the substrate's surface and localized field-induced defects were optically created. Both umbilic (central) and line defects were observed. The formation of field-induced umbilic defects was modeled in numerical simulations. In addition, line defects were experimentally studied. It was seen that line defects interconnected the centers of two central defects (field-induced defects, which were present at the upper and lower surfaces of the LC layer). In addition, line disclinations separating reverse tilt domains (caused by the inhomogeneous distribution of the photogenerated fields) were seen. These line disclinations were pinned to the central defects. By exposure with two adjacent focused laser beams two umbilic defects were created side by side and interconnected with a line defect (the line defects pinned to each umbilic defect were joined in a single defect line). An alternative technique is presented to field-induce promising photonic motives (microlenses, resonators, line defects) in a liquid crystalline, hybridized birefringent film on a microscopic scale by using a low-power laser (opposed to the high power necessary to induce optical Kerr responses in a neat LC).
RESUMO
The local environment at polarized solid-liquid interfaces provides a unique medium for chemical reactions that could be exploited to control the selectivity of non-faradaic reactions. Polarized interfaces are commonly prepared by applying a voltage to an electrode in an electrolyte solution, but it is challenging to achieve high surface charge densities while suppressing faradaic reactions. Ferroelectric materials have permanent surface charge densities that arise from the dipole moments of ferroelectric domains and can be used to create polarized solid-liquid interfaces without applying a voltage. We studied the effects of ferroelectric oxides on the selectivity of a Rh porphyrin-catalyzed carbene rearrangement. The addition of ferroelectric BaTiO3 nanoparticles to the reaction solution changed the product ratio in the same direction and by a similar magnitude as performing the reaction at an electrode-electrolyte interface polarized by a voltage. The results demonstrate that colloidal suspensions of BaTiO3 nanoparticles act as a dispersible polarized interface that can influence the selectivity of non-faradaic reactions.
RESUMO
BACKGROUND: Primary care providers (PCPs) have few tools for enhancing patient self-efficacy, a key mediator of myriad health-influencing behaviors. OBJECTIVE: To examine whether brief standardized patient instructor (SPI)-delivered training increases PCPs' use of self-efficacy-enhancing interviewing techniques (SEE IT). DESIGN: Randomized controlled trial. PARTICIPANTS: Fifty-two family physicians and general internists from 12 primary care offices drawn from two health systems in Northern California. INTERVENTIONS: Experimental arm PCPs received training in the use of SEE IT training during three outpatient SPI visits scheduled over a 1-month period. Control arm PCPs received a single SPI visit, during which they viewed a diabetes treatment video. All intervention visits (experimental and control) were timed to last 20 min. SPIs portrayed patients struggling with self-care of depression and diabetes in the first 7 min, then delivered the appropriate intervention content during the remaining 13 min. MAIN MEASURES: The primary outcome was provider use of SEE IT (a count of ten behaviors), coded from three audio-recorded standardized patient visits at 1-3 months, again involving depression and diabetes self-care. Two five-point scales measured physician responses to training: Value (7 items: quality, helpfulness, understandability, relevance, feasibility, planned use, care impact), and Hassle (2 items: personal hassle, flow disruption). KEY RESULTS: Pre-intervention, study PCPs used a mean of 0.7 behaviors/visit, with no significant between-arm difference (P = 0.23). Post-intervention, experimental arm PCPs used more of the behaviors than controls (mean 2.7 vs. 1.0 per visit; adjusted difference 1.7, 95 % CI 1.1-2.2; P < 0.001). Experimental arm PCPs had higher training Value scores than controls (mean difference 1.05, 95 % CI 0.68-1.42; P < 0.001), and similarly low Hassle scores. CONCLUSIONS: Primary care physicians receiving brief SPI-delivered training increased their use of SEE IT and found the training to be of value. Whether patients visiting SEE IT-trained physicians experience improved health behaviors and outcomes warrants study. CLINICALTRIALS. GOV IDENTIFIER: NCT01618552.
Assuntos
Comportamentos Relacionados com a Saúde , Entrevistas como Assunto , Educação de Pacientes como Assunto , Médicos de Atenção Primária/educação , Atenção Primária à Saúde/métodos , Autoeficácia , Atitude do Pessoal de Saúde , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Paciente , Relações Médico-Paciente , Autocuidado/psicologiaRESUMO
A liquid crystal light valve (LCLV) is an optically controlled spatial light modulator that allows recording of dynamic holograms. Almost all known LCLVs operate in the visible range of the spectrum. In the present work we demonstrate a LCLV operating in the infrared. The interaction of signal and pump waves is studied for different applied voltages, grating spacings, and intensities of the recording beams. A fourfold amplification of the weak signal beam is achieved. The amplitude of the refractive index modulation Δn=0.007 and nonlinear coupling constant n2=-1 cm²/W are estimated from the experimental results. External phase modulation of one of the recording beams is used for a further transient increase of the signal beam gain.
RESUMO
We have studied, using Monte Carlo computer simulations, the effects that nanoparticles of similar size and three different shapes (spherical, elongated and discotic) dispersed at different concentrations in a liquid crystal (LC), have on the transition temperature, order parameter and mobility of the suspension. We have modelled the nanoparticles as berry-like clusters of spherical Lennard-Jones sites and the NP with a Gay-Berne model. We find that the overall phase behaviour is not affected by the addition of small amounts (xN = 0.1-0.5%) of nanoparticles, with the lowest perturbation obtained with disc-like nanoparticles at the lowest concentration. We observe a general decrease of the clearing temperature and a reduction in the orientational order with a change in its temperature variation, particularly in the case of the xN = 0.5% dispersions and with a more pronounced effect when the nanoparticles are spherical.
RESUMO
The anti-parasitic benzimidazole flubendazole has been used for many years to treat intestinal infections in humans and animals. Previous genotoxicity studies have shown that the compound is not a bacterial mutagen and a bone marrow micronucleus test, using a formulation that limited systemic absorption, was negative. The purpose of this study is to explore the genotoxicity of flubendazole and its main metabolites in in vitro micronucleus studies and to test a new oral formulation that improves systemic absorption in an in vivo micronucleus test. The isolated metabolites were also screened using the Ames test for bacterial mutagenicity. It was found that flubendazole, like other chemically related benzimidazoles used in anti-parasitic therapies, is a potent aneugen in vitro The hydrolysed metabolite of flubendazole is negative in these tests, but the reduced metabolite (R- and S-forms) shows both aneugenic and clastogenic activity. However, in vitro micronucleus tests of flubendazole in the presence of rat liver S9 gave almost identical signals for aneugenicity as they did in the absence of S9, suggesting that any clastogenicity from the reduced metabolite is not sufficient to change the overall profile. Like flubendazole itself, both metabolites are negative in the Ames test. Analysis of dose-response curves from the in vitro tests, using recently developed point of departure approaches, demonstrate that the aneugenic potency of flubendazole is very similar to related anti-parasitic benzimidazoles, including albendazole, which is used in mass drug administration programmes to combat endemic filarial diseases. The in vivo micronucleus test of the new formulation of flubendazole also showed evidence of induced aneugenicity. Analysis of the in vivo data allowed a reference dose for aneugenicity to be established which can be compared with therapeutic exposures of flubendazole when this has been established. Analysis of the plasma from the animals used in the in vivo micronucleus test showed that there is increased exposure to flubendazole compared with previously tested formulations, as well as significant formation of the non-genotoxic hydrolysed metabolite of flubendazole and small levels of the reduced metabolite. In conclusion, this study shows that flubendazole is a potent aneugen in vitro with similar potency to chemically related benzimidazoles currently used as anti-parasitic therapies. The reduced metabolite also has aneugenic properties as well as clastogenic properties. Treatment with a new formulation of flubendazole that allows increased systemic exposure, compared with previously used formulations, also results in detectable aneugenicity in vivo. Based on the lack of carcinogenicity of this class of benzimidazoles and the intended short-term dosing, it is unlikely that flubendazole treatment will pose a carcinogenic risk to patients.
Assuntos
Aneugênicos/toxicidade , Aberrações Cromossômicas , Dano ao DNA , Linfócitos/efeitos dos fármacos , Mebendazol/análogos & derivados , Ativação Metabólica , Aneugênicos/metabolismo , Animais , Antinematódeos/metabolismo , Antinematódeos/toxicidade , Células Cultivadas , Cromossomos Humanos/efeitos dos fármacos , DNA/efeitos dos fármacos , Humanos , Linfócitos/metabolismo , Masculino , Mebendazol/metabolismo , Mebendazol/toxicidade , Testes para Micronúcleos , Mutagênicos/metabolismo , Mutagênicos/toxicidade , RatosRESUMO
The incorporation of gold nanoparticles in heterojunction solar cells is expected to increase the efficiency due to plasmon effects, but the literature studies are sometimes controversial. In this work, gold nanoparticles passivated with (Ph)n-(CH2)3SH (n=1, 2, 3) have been synthesized by reduction of tetrachloroauric acid with sodium borohydride in two ways: (1) one-phase where both the thiol and the gold salt are solubilized in a mixture of methanol with acetic acid: Au-s-(Ph)n or (2), two-phase, using tetraoctylammonium bromide (TOAB) to transfer gold from water to toluene where the thiol is solubilized, Au(TOAB)-s-(Ph)n. The morphological, experimental and simulated optical properties were studied and analyzed as a function of the thiol and of the synthetic procedure in order to correlate them with the efficiency of plasmonic hybrid solar cells in the following configuration ITO/PEDOT:PSS/P3HT:PCBM-C60:Au-nanoparticles/Field's metal, where PEDOT: PSS is poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), P3HT is poly(3-hexylthiophene-2,5-diyl) and PCBM-C60 is [6,6]-Phenyl C61 butyric acid methyl ester. Our findings indicate that the gold nanoparticles incorporation is affecting the electrical properties of the active layer giving a maximum efficiency for Au-s-(Ph)3. Moreover, TOAB, which is usually used in the synthesis of thiol passivated gold nanoparticles, has negative effects in both plasmonic and electrical properties. This result is important for optoelectronic applications of gold nanoparticles prepared with any procedures that involve TOAB.
RESUMO
A nematic liquid crystal (LC) mixture was doped with harvested ferroelectric BaTiO3 nanoparticles and investigated with wide- and small-angle x-ray scattering upon heating from the nematic to the isotropic phase. At moderate temperatures, colloidal crystallites were observed. LC test cells with homeotropic anchoring were placed in the x-ray beam and the realignment of the LC director was investigated upon applying an electric field.
RESUMO
The influence of the size of harvested barium titanate nanoparticles on the properties of ferroelectric liquid crystal (FLC) nanocolloids was investigated by electro-optical and dielectric methods. The spontaneous polarization and the switching time are decreased for the liquid crystalline nanocolloids compared to nondoped FLC mixtures of different dipole strengths; this dependence is stronger for small size particles (9 nm) and weaker for larger size particles (26 nm) by the same concentration in weight. The decrease of the Goldstone mode (GM) relaxation frequency and the decrease of the dielectric GM absorption strength of the nanocomposites compared to the nondoped FLC mixture go stepwise with the increase of the nanoparticles diameter. Results have been interpreted via strong interaction between the FLC dipoles and the dipoles of the highly polar barium titanate nanoparticles.