Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 157: 107-112, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38546194

RESUMO

In the 1980s, a mass die-off of the long-spined sea urchin Diadema antillarum occurred on Florida and Caribbean coral reefs. D. antillarum populations largely did not recover, and in 2022, remaining populations experienced another mass mortality event. A ciliate most similar to Philaster apodigitiformis was identified as the causative agent of the 2022 event, which was named D. antillarum scuticociliatosis (DaSc). Here, we investigated possible treatments for this pathogen. We tested the efficacy of 10 compounds at final concentrations of 100, 50, 25, 12.5, 6.25, and 3.13 µM, or a 10-fold serial dilution series, against ciliates cultured from an infected D. antillarum specimen. Of the tested compounds, 8 induced 100% ciliate mortality at some dose after 24 h. The most effective (defined as those requiring the lowest dose to induce 100% ciliate mortality) were quinacrine and tomatine (both effective at 12.5 µM), followed by furaltadone and plumbagin (25 µM), bithionol sulfoxide and 2'4' dihydroxychalcone (50 µM), and oxyclozanide and carnidazole (100 µM). Toltrazuril and a commercially available anticiliate product containing naphthoquinones were not effective at any dose tested. Shortened (15 min) time trials were performed using ciliate cultures reared in natural seawater to better reflect natural environmental conditions, and revealed that 2 of the compounds (quinacrine and tomatine) induced 100% ciliate mortality at 100 µM, with tomatine also effective at 50 µM. This study identified several treatments effective against the causative agent of DaSc in vitro, but their toxicity and utility in vivo remain unknown.


Assuntos
Cilióforos , Tomatina , Animais , Ouriços-do-Mar , Recifes de Corais , Quinacrina
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366175

RESUMO

Mass mortality of the dominant coral reef herbivore Diadema antillarum in the Caribbean in the early 1980s contributed to a persistent phase shift from coral- to algal-dominated reefs. In 2022, a scuticociliate most closely related to Philaster apodigitiformis caused further mass mortality of D. antillarum across the Caribbean, leading to >95% mortality at affected sites. Mortality was also reported in the related species Diadema setosum in the Mediterranean in 2022, though the causative agent of the Mediterranean outbreak has not yet been determined. In April 2023, mass mortality of Diadema setosum occurred along the Sultanate of Oman's coastline. Urchins displayed signs compatible with scuticociliatosis including abnormal behavior, drooping and loss of spines, followed by tissue necrosis and death. Here we report the detection of an 18S rRNA gene sequence in abnormal urchins from Muscat, Oman, that is identical to the Philaster strain responsible for D. antillarum mass mortality in the Caribbean. We also show that scuticociliatosis signs can be elicited in Diadema setosum by experimental challenge with the cultivated Philaster strain associated with Caribbean scuticociliatosis. These results demonstrate the Philaster sp. associated with D. antillarum mass mortality has rapidly spread to geographically distant coral reefs, compelling global-scale awareness and monitoring for this devastating condition through field surveys, microscopy, and molecular microbiological approaches, and prompting investigation of long-range transmission mechanisms.


Assuntos
Antozoários , Parasitos , Animais , Ecossistema , Ouriços-do-Mar/genética , Recifes de Corais
3.
PeerJ ; 11: e15836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637172

RESUMO

Effective treatment and prevention of any disease necessitates knowledge of the causative agent, yet the causative agents of most coral diseases remain unknown, in part due to the difficulty of distinguishing the pathogenic microbe(s) among the complex microbial backdrop of coral hosts. Stony coral tissue loss disease (SCTLD) is a particularly destructive disease of unknown etiology, capable of transmitting through the water column and killing entire colonies within a matter of weeks. Here we used a previously described method to (i) isolate diseased and apparently healthy coral colonies within individual mesocosms containing filtered seawater with low microbial background levels; (ii) incubate for several days to enrich the water with coral-shed microbes; (iii) use tangential-flow filtration to concentrate the microbial community in the mesocosm water; and then (iv) filter the resulting concentrate through a sequential series of different pore-sized filters. To investigate the size class of microorganism(s) associated with SCTLD transmission, we used 0.8 µm pore size filters to capture microeukaryotes and expelled zooxanthellae, 0.22 µm pore size filters to capture bacteria and large viruses, and 0.025 µm pore size filters to capture smaller viruses. In an attempt to further refine which size fraction(s) contained the transmissible element of SCTLD, we then applied these filters to healthy "receiver" coral fragments and monitored them for the onset of SCTLD signs over three separate experimental runs. However, several factors outside of our control confounded the transmission results, rendering them inconclusive. As the bulk of prior studies of SCTLD in coral tissues have primarily investigated the associated bacterial community, we chose to characterize the prokaryotic community associated with all mesocosm 0.22 µm pore size filters using Illumina sequencing of the V4 region of the 16S rRNA gene. We identified overlaps with prior SCTLD studies, including the presence of numerous previously identified SCTLD bioindicators within our mesocosms. The identification in our mesocosms of specific bacterial amplicon sequence variants that also appear across prior studies spanning different collection years, geographic regions, source material, and coral species, suggests that bacteria may play some role in the disease.


Assuntos
Antozoários , Animais , RNA Ribossômico 16S/genética , Biomarcadores Ambientais , Filtração , Água
4.
Sci Adv ; 9(16): eadg3200, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075109

RESUMO

Echinoderm mass mortality events shape marine ecosystems by altering the dynamics among major benthic groups. The sea urchin Diadema antillarum, virtually extirpated in the Caribbean in the early 1980s by an unknown cause, recently experienced another mass mortality beginning in January 2022. We investigated the cause of this mass mortality event through combined molecular biological and veterinary pathologic approaches comparing grossly normal and abnormal animals collected from 23 sites, representing locations that were either affected or unaffected at the time of sampling. Here, we report that a scuticociliate most similar to Philaster apodigitiformis was consistently associated with abnormal urchins at affected sites but was absent from unaffected sites. Experimentally challenging naïve urchins with a Philaster culture isolated from an abnormal, field-collected specimen resulted in gross signs consistent with those of the mortality event. The same ciliate was recovered from treated specimens postmortem, thus fulfilling Koch's postulates for this microorganism. We term this condition D. antillarum scuticociliatosis.


Assuntos
Ecossistema , Ouriços-do-Mar , Animais , Região do Caribe
5.
ISME Commun ; 3(1): 19, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894742

RESUMO

Stony coral tissue loss disease (SCTLD) has been causing significant whole colony mortality on reefs in Florida and the Caribbean. The cause of SCTLD remains unknown, with the limited concurrence of SCTLD-associated bacteria among studies. We conducted a meta-analysis of 16S ribosomal RNA gene datasets generated by 16 field and laboratory SCTLD studies to find consistent bacteria associated with SCTLD across disease zones (vulnerable, endemic, and epidemic), coral species, coral compartments (mucus, tissue, and skeleton), and colony health states (apparently healthy colony tissue (AH), and unaffected (DU) and lesion (DL) tissue from diseased colonies). We also evaluated bacteria in seawater and sediment, which may be sources of SCTLD transmission. Although AH colonies in endemic and epidemic zones harbor bacteria associated with SCTLD lesions, and aquaria and field samples had distinct microbial compositions, there were still clear differences in the microbial composition among AH, DU, and DL in the combined dataset. Alpha-diversity between AH and DL was not different; however, DU showed increased alpha-diversity compared to AH, indicating that, prior to lesion formation, corals may undergo a disturbance to the microbiome. This disturbance may be driven by Flavobacteriales, which were especially enriched in DU. In DL, Rhodobacterales and Peptostreptococcales-Tissierellales were prominent in structuring microbial interactions. We also predict an enrichment of an alpha-toxin in DL samples which is typically found in Clostridia. We provide a consensus of SCTLD-associated bacteria prior to and during lesion formation and identify how these taxa vary across studies, coral species, coral compartments, seawater, and sediment.

6.
J Environ Manage ; 337: 117668, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958278

RESUMO

Emerging diseases can have devastating consequences for wildlife and require a rapid response. A critical first step towards developing appropriate management is identifying the etiology of the disease, which can be difficult to determine, particularly early in emergence. Gathering and synthesizing existing information about potential disease causes, by leveraging expert knowledge or relevant existing studies, provides a principled approach to quickly inform decision-making and management efforts. Additionally, updating the current state of knowledge as more information becomes available over time can reduce scientific uncertainty and lead to substantial improvement in the decision-making process and the application of management actions that incorporate and adapt to newly acquired scientific understanding. Here we present a rapid prototyping method for quantifying belief weights for competing hypotheses about the etiology of disease using a combination of formal expert elicitation and Bayesian hierarchical modeling. We illustrate the application of this approach for investigating the etiology of stony coral tissue loss disease (SCTLD) and discuss the opportunities and challenges of this approach for addressing emergent diseases. Lastly, we detail how our work may apply to other pressing management or conservation problems that require quick responses. We found the rapid prototyping methods to be an efficient and rapid means to narrow down the number of potential hypotheses, synthesize current understanding, and help prioritize future studies and experiments. This approach is rapid by providing a snapshot assessment of the current state of knowledge. It can also be updated periodically (e.g., annually) to assess changes in belief weights over time as scientific understanding increases. Synthesis and applications: The rapid prototyping approaches demonstrated here can be used to combine knowledge from multiple experts and/or studies to help with fast decision-making needed for urgent conservation issues including emerging diseases and other management problems that require rapid responses. These approaches can also be used to adjust belief weights over time as studies and expert knowledge accumulate and can be a helpful tool for adapting management decisions.


Assuntos
Antozoários , Animais , Teorema de Bayes , Incerteza
7.
Biol Methods Protoc ; 7(1): bpac007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187265

RESUMO

The causative agents of most coral diseases today remain unknown, complicating disease response and restoration efforts. Pathogen identifications can be hampered by complex microbial communities naturally associated with corals and seawater, which create complicating "background noise" that can potentially obscure a pathogen's signal. Here, we outline an approach to investigate waterborne coral diseases that use a combination of coral mesocosms, tangential flow filtration, and size fractionation to reduce the impact of this background microbial diversity, compensate for unknown infectious dose, and further narrow the suspect pool of potential pathogens. As proof of concept, we use this method to compare the bacterial communities shed into six Montastraea cavernosa coral mesocosms and demonstrate this method effectively detects differences between diseased and healthy coral colonies. We found several amplicon sequence variants (ASVs) in the diseased mesocosms that represented 100% matches with ASVs identified in prior studies of diseased coral tissue, further illustrating the effectiveness of our approach. Our described method is an effective alternative to using coral tissue or mucus to investigate waterborne coral diseases of unknown etiology and can help more quickly narrow the pool of possible pathogens to better aid in disease response efforts. Additionally, this versatile method can be easily adapted to characterize either the entire microbial community associated with a coral or target-specific microbial groups, making it a beneficial approach regardless of whether a causative agent is suspected or is completely unknown.

8.
Microb Ecol ; 78(1): 170-184, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30411189

RESUMO

Ascidians (Chordata, Ascidiacea) are considered to be prominent marine invaders, able to tolerate highly polluted environments and fluctuations in salinity and temperature. Here, we examined the seasonal and spatial dynamics of the microbial communities in the inner-tunic of two invasive ascidians, Styela plicata (Lesueur 1823) and Herdmania momus (Savigny 1816), in order to investigate the changes that occur in the microbiome of non-indigenous ascidians in different environments. Microbial communities were characterized using next-generation sequencing of partial (V4) 16S rRNA gene sequences. A clear differentiation between the ascidian-associated microbiome and bacterioplankton was observed, and two distinct sets of operational taxonomic units (OTUs), one core and the other dynamic, were recovered from both species. The relative abundance of the dynamic OTUs in H. momus was higher than in S. plicata, for which core OTU structure was maintained independently of location. Ten and seventeen core OTUs were identified in S. plicata and H. momus, respectively, including taxa with reported capabilities of carbon fixing, ammonia oxidization, denitrification, and heavy-metal processing. The ascidian-sourced dynamic OTUs clustered in response to site and season but significantly differed from the bacterioplankton community structure. These findings suggest that the associations between invasive ascidians and their symbionts may enhance host functionality while maintaining host adaptability to changing environmental conditions.


Assuntos
Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Microbiota , Simbiose , Urocordados/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Comportamento Predatório , RNA Ribossômico 16S/genética , Urocordados/microbiologia
9.
Microbes Environ ; 33(4): 435-439, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487350

RESUMO

Various DNA extraction methods are often used interchangeably for the characterization of microbial communities despite indications that different techniques produce disparate results. The microbiomes of two ascidian species were herein characterized using two common DNA extraction kits, the DNeasy Blood and Tissue Kit (Qiagen) and the PowerSoil DNA Isolation Kit (Mo Bio Laboratories), followed by next-generation (Illumina) sequencing of partial 16S rRNA genes. Significant differences were detected in microbial community diversity and structure between ascidian species, but not between kits, suggesting similar recovery of biological variation and low technical variation between the two extraction methods for ascidian microbiome characterization.


Assuntos
Bactérias/genética , DNA Bacteriano/isolamento & purificação , Técnicas Genéticas/normas , Microbiota/genética , Simbiose , Urocordados/microbiologia , Animais , Bactérias/isolamento & purificação , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
10.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052904

RESUMO

Harbor systems represent passive gateways for the introduction of nonnative ascidians that compete with the surrounding benthos and may spread through localized dispersal, even populating adjacent natural reefs. To investigate the potential role of microbial symbionts in the success of ascidian introductions and spread, we evaluated the host-specificity of prokaryotic communities within two ascidian species commonly found off the North Carolina coast. Replicate samples of the native ascidian Eudistoma capsulatum, the nonnative ascidian Distaplia bermudensis and seawater were collected from artificial (harbor) and natural reef substrates. Prokaryotic communities in seawater samples and ascidian tunics were characterized via next-generation sequencing of partial 16S rRNA gene sequences. Ascidian microbiomes clustered strongly in response to host species, with significant differences in community structure between the two species and seawater. Further, symbiont community structure differed significantly between E. capsulatumindividuals collected from artificial and natural habitats, though this was not the case for D. bermudensis. These findings suggested that some ascidian species possess stable microbial symbiont communities that allow them to thrive in a wide range of habitats, while other species rely on the restructuring of their microbial communities with specific symbionts (e.g. Chelativorans) to survive under particular environmental conditions such as increased pollution.


Assuntos
Ecossistema , Microbiota , Simbiose , Urocordados/microbiologia , Animais , Especificidade de Hospedeiro , Espécies Introduzidas , Microbiota/genética , North Carolina , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Urocordados/classificação
11.
Sci Rep ; 8(1): 6496, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679016

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Sci Rep ; 7(1): 11033, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887506

RESUMO

Many ascidian species have experienced worldwide introductions, exhibiting remarkable success in crossing geographic borders and adapting to local environmental conditions. To investigate the potential role of microbial symbionts in these introductions, we examined the microbial communities of three ascidian species common in North Carolina harbors. Replicate samples of the globally introduced species Distaplia bermudensis, Polyandrocarpa anguinea, and P. zorritensis (n = 5), and ambient seawater (n = 4), were collected in Wrightsville Beach, NC. Microbial communities were characterized by next-generation (Illumina) sequencing of partial (V4) 16S rRNA gene sequences. Ascidians hosted diverse symbiont communities, consisting of 5,696 unique microbial OTUs (at 97% sequenced identity) from 47 bacterial and three archaeal phyla. Permutational multivariate analyses of variance revealed clear differentiation of ascidian symbionts compared to seawater bacterioplankton, and distinct microbial communities inhabiting each ascidian species. 103 universal core OTUs (present in all ascidian replicates) were identified, including taxa previously described in marine invertebrate microbiomes with possible links to ammonia-oxidization, denitrification, pathogenesis, and heavy-metal processing. These results suggest ascidian microbial symbionts exhibit a high degree of host-specificity, forming intimate associations that may contribute to host adaptation to new environments via expanded tolerance thresholds and enhanced holobiont function.


Assuntos
Archaea/classificação , Bactérias/classificação , Biota , Urocordados/microbiologia , Animais , Archaea/genética , Bactérias/genética , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , North Carolina , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
13.
Cancer Epidemiol Biomarkers Prev ; 15(7): 1355-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16835336

RESUMO

Previous studies have identified low patient accrual in large-scale cancer clinical trials, particularly for underrepresented groups, such as ethnic minorities, females, and patients >65 years. As there have been few studies examining participation in cancer genetics epidemiologic research, our objective was to identify clinical and demographic factors predicting enrollment in these studies. A total of 1,111 patients diagnosed with colorectal cancer presenting to a gastrointestinal oncology clinic were approached to enroll in a study investigating the role of the MSH6 gene in familial colorectal cancer. Patient consent was sought for providing a blood specimen for DNA analysis and review of medical records/tumor specimens and contacting family members to confirm the family history of cancer. Seven predictor variables for enrollment (age, sex, ethnicity, family history of colorectal cancer in a first-degree relative, presence of children, insurance type, and type of visit) were analyzed using logistic regression analysis to determine the effect on decision to enroll. Of 1,111 patients approached, 696 (62.6%) enrolled in the study. Of these approached individuals, 4.2% were of nonwhite ethnicity and 33.5% were age > or =65 years. Patients of white ethnicity [odds ratio (OR), 2.10; P = 0.018], males (OR, 1.47; P = 0.002), those ages < or =65 years (OR, 1.42; P = 0.009), and those with a first-degree relative with colorectal cancer (OR, 1.57; P = 0.005) were significantly more likely to enroll. Fewer than 4% of all participants denied permission for the study researchers to access information from medical records or to be recontacted by researchers to discuss the enrollment of additional family members. Our data suggest that, once subjects decided to enroll, the majority (88%) was comfortable with consenting to all study components, including the creation of cell lines and future recontact. Low participation rates for ethnic minorities, females, and elderly patients are similar for both cancer genetics and clinical trial studies.


Assuntos
Pesquisa Biomédica , Ensaios Clínicos como Assunto/normas , Neoplasias Colorretais/terapia , Seleção de Pacientes , Idoso/psicologia , Criança , Feminino , Serviços em Genética , Humanos , Masculino , Grupos Minoritários , Grupos Populacionais , Projetos de Pesquisa/normas , Pesquisadores
14.
J Biol Chem ; 280(15): 14469-75, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15695827

RESUMO

The N terminus of skeletal myosin light chain 1 and the cardiomyopathy loop of human cardiac myosin have been shown previously to bind to actin in the presence and absence of tropomyosin (Patchell, V. B., Gallon, C. E., Hodgkin, M. A., Fattoum, A., Perry, S. V., and Levine, B. A. (2002) Eur. J. Biochem. 269, 5088-5100). We have extended this work and have shown that segments corresponding to other regions of human cardiac beta-myosin, presumed to be sites of interaction with F-actin (residues 554-584, 622-646, and 633-660), likewise bind independently to actin under similar conditions. The binding to F-actin of a peptide spanning the minimal inhibitory segment of human cardiac troponin I (residues 134-147) resulted in the dissociation from F-actin of all the myosin peptides bound to it either individually or in combination. Troponin C neutralized the effect of the inhibitory peptide on the binding of the myosin peptides to F-actin. We conclude that the binding of the inhibitory region of troponin I to actin, which occurs during relaxation in muscle when the calcium concentration is low, imposes conformational changes that are propagated to different locations on the surface of actin. We suggest that the role of tropomyosin is to facilitate the transmission of structural changes along the F-actin filament so that the monomers within a structural unit are able to interact with myosin.


Assuntos
Actinas/química , Tropomiosina/fisiologia , Troponina I/fisiologia , Actinas/metabolismo , Animais , Cardiomiopatias/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Músculo Esquelético/metabolismo , Subfragmentos de Miosina/química , Miosinas/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Prótons , Coelhos , Espectrometria de Fluorescência , Tropomiosina/química , Troponina C/química , Miosinas Ventriculares/química
15.
Biochim Biophys Acta ; 1596(1): 121-30, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11983427

RESUMO

Caldesmon is an inhibitory protein believed to be involved in the regulation of thin filament activity in smooth muscles and is a major cytoplasmic substrate for MAP kinase. NMR spectroscopy shows that the actin binding properties of the minimal inhibitory region of caldesmon, residues 750-779, alter upon MAP kinase phosphorylation of Ser-759, a residue not involved in actin binding. This phosphorylation leads to markedly diminished actin affinity as a result of the loss of interaction at one of the two sites that bind to F-actin. The structural basis for the altered interaction is identified from the observation that phosphorylation destabilises a turn segment linking the two actin binding sites and thereby results in the randomisation of their relative disposition. This modulatory influence of Ser-759 phosphorylation is not merely a function of the bulkiness of the covalent modification since the stability of the turn region is observed to be sensitive to the ionisation state of the phosphate group. The data are discussed in the context of the inhibitory association of the C-terminal domain of caldesmon with F-actin.


Assuntos
Actinas/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Actinas/antagonistas & inibidores , Sítios de Ligação , Proteínas de Ligação a Calmodulina/química , Humanos , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Miosinas/antagonistas & inibidores , Peptídeos/química , Fosforilação , Conformação Proteica , Serina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA