Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Biology (Basel) ; 13(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38392335

RESUMO

United States commercial beekeepers prepare honey bee colonies for almond pollination in California each year in late January to early February. This represents the largest managed pollination event in the world and involves more than half of all U.S. honey bee colonies. In winter 2023, numerous colonies in Florida, which were graded as suitable for almonds (larger than ten frames of bees), dwindled suddenly or altogether died within several weeks, just prior to movement for almonds. The timing of these losses and the resulting morbidity caused severe economic harm to affected operations. This study reports interviews with affected stakeholders, their economic harm, and analyses of pathogens and parasites found in their colonies.

2.
Proc Biol Sci ; 291(2014): 20232293, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196351

RESUMO

Deformed wing virus (DWV) is a resurgent insect pathogen of honeybees that is efficiently transmitted by vectors and through host social contact. Continual transmission of DWV between hosts and vectors is required to maintain the pathogen within the population, and this vector-host-pathogen system offers unique disease transmission dynamics for pathogen maintenance between vectors and a social host. In a series of experiments, we measured vector-vector, host-host and host-vector transmission routes and show how these maintain DWV in honeybee populations. We found co-infestations on shared hosts allowed for movement of DWV from mite to mite. Additionally, two social behaviours of the honeybee, trophallaxis and cannibalization of pupae, provide routes for horizontal transmission from bee to bee. Circulation of the virus solely among hosts through communicable modes provides a reservoir of DWV for naïve Varroa to acquire and subsequently vector the pathogen. Our findings illustrate the importance of community transmission between hosts and vector transmission. We use these results to highlight the key avenues used by DWV during maintenance and infection and point to similarities with a handful of other infectious diseases of zoonotic and medical importance.


Assuntos
Movimento , Varroidae , Animais , Abelhas , Pupa , Comportamento Social
3.
Sci Rep ; 14(1): 1726, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242935

RESUMO

USDA-ARS Bee Research Laboratory received symptomatic honey bee (Apis mellifera L.) samples across the United States for disease diagnosis. Here, we present a retrospective study and cartography of ectoparasite Varroa destructor and intracellular microsporidia parasite Nosema spp. These two major parasites were identified in the diseased honey bee samples between 2015 and 2022. Varroa infestation level (VIL) was examined by a wash technique (Mites/100 bees) and calculated as a percentage, while Nosema infection was quantified by microscopical spore count (Million Spores/Bee). Data were analyzed by month, year, state, and by nine geographical climate regions described in the U.S. Of adult bee samples (n = 4039) that were analyzed for Varroa mite infestation, the overall VIL in the U.S. ranged between 0.4 and 30.85%, with an overall national VIL and Varroa prevalence of 8.21% and 85.14%, respectively. Overall monthly data showed VIL constantly exceeded the critical level of 4% except from June to September and reached a maximum of 15% in January and December. Nationwide, VIL significantly (p < 0.001) increased from 2015 to 2018 (1.1-4.7%), plateaued from 2018 to 2021 (4.7-4.5%), followed by a significant decrease in 2022 (3.6%). Significant VIL differences (p < 0.001) were recorded among climate regions, with the highest mite infestation levels in the Upper Midwest region (13.9%) and the lowest in the West region (5.1%). Of adult bee samples (n = 2,994) that were analyzed for Nosema infection, Nosema spore count ranged between (1-16.8) million spores per bee among states, with a national average of 6.8 and a prevalence of 99.7%. The lowest and highest Nosema loads were respectively recorded in the South region (3.1) and Upper Midwest (10.5), a significant difference (p < 0.001). No statistical differences were recorded among the six other climate regions. Overall, VIL and Nosema infection correlated significantly (p < 0.001) with a regression coefficient of (R2 = 0.6). Our data, which originated from ailing bee colonies, showed significantly higher rates of maladies compared to data from healthy colonies obtained by the USDA-APHIS National Honey Bee Survey, demonstrating the role of bee diseases caused by Varroa mite and Nosema in honey bee population declines.


Assuntos
Nosema , Escabiose , Varroidae , Abelhas , Animais , Estudos Retrospectivos , Prevalência
4.
Rev Argent Microbiol ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38272730

RESUMO

Water kefir is a sparkling, slightly acidic fermented beverage made from sugar, water, and water kefir grains, which are a mixture of yeast and bacteria. These grains produce a variety of fermentation compounds such as lactic acid, acetaldehyde, acetoin, ethanol and carbon dioxide. In this study, a high-throughput sequencing technique was used to characterize the bacterial composition of the original water kefir from which potential probiotics were obtained. We studied the bacterial diversity of both water kefir grains and beverages. DNA was extracted from three replicate samples of both grains and beverages using the Powerlyzer Microbial Kit. The hypervariable V1-V2 region of the bacterial 16S ribosomal RNA gene was amplified to prepare six DNA libraries. Between 1.4M and 2.4M base-pairs were sequenced for the library. In total, 28721971 raw reads were obtained from all the samples. Estimated species richness was higher in kefir beverage samples compared to grain samples. Moreover, a higher level of microbial alpha diversity was observed in the beverage samples. Particularly, the predominant bacteria in beverages were Anaerocolumna and Ralstonia, while in grains Liquorilactobacillus dominated, with lower levels of Leuconostoc and Oenococcus. Although the bacterial diversity in kefir grains was low because only three genera were the most represented, all of them are LAB bacteria with the potential to serve as probiotics in the artificial feeding of bees.

5.
J Invertebr Pathol ; 203: 108068, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272108

RESUMO

Host-parasite co-evolution is a reciprocal genetic change; however, the parasite may switch to a novel host, deviating from conventional co-evolution. Varroa destructor is a native parasite of the honey bee Apis cerana, and the mite has established infestation in another honey bee, Apis mellifera, causing colony failure. When mites switched to the novel host, they formed a distinct population from mites that remained on the native host. Consequently, this led to divergence in the microbiota associated with mites in two host populations. The microbes were conserved at the species level reflected by alpha diversity, with substantial relative abundance variance. Microbes found in mites were distinct from the bee microbiota. They mainly were pathogenic with antibiotic resistance, while a few bacterial taxa were previously found in honey bees, including Klebsiella pneumoniae and Pseudomanas aeruginosa. These symbionts may transfer between the mites and honey bees.


Assuntos
Ácaros , Parasitos , Varroidae , Abelhas , Animais
6.
Appl Environ Microbiol ; 89(10): e0102323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37791764

RESUMO

Temperature affects growth, metabolism, and interspecific interactions in microbial communities. Within animal hosts, gut bacterial symbionts can provide resistance to parasitic infections. Both infection and populations of symbionts can be shaped by the host body temperature. However, the effects of temperature on the antiparasitic activities of gut symbionts have seldom been explored. The Lactobacillus-rich gut microbiota of facultatively endothermic honey bees is subject to seasonal and ontogenetic changes in host temperature that could alter the effects of symbionts against parasites. We used cell cultures of a Lactobacillus symbiont and an important trypanosomatid gut parasite of honey bees to test the potential for temperature to shape parasite-symbiont interactions. We found that symbionts showed greater heat tolerance than parasites and chemically inhibited parasite growth via production of acids. Acceleration of symbiont growth and acid production at high temperatures resulted in progressively stronger antiparasitic effects across a temperature range typical of bee colonies. Consequently, the presence of symbionts reduced both the peak growth rate and heat tolerance of parasites. Substantial changes in parasite-symbiont interactions were evident over a temperature breadth that parallels changes in diverse animals exhibiting infection-related fevers and the amplitude of circadian temperature variation typical of endothermic birds and mammals, implying the frequent potential for temperature to alter symbiont-mediated resistance to parasites in endo- and ectothermic hosts. Results suggest that the endothermic behavior of honey bees could enhance the impacts of gut symbionts on parasites, implicating thermoregulation as a reinforcer of core symbioses and possibly microbiome-mediated antiparasitic defense. IMPORTANCE Two factors that shape the resistance of animals to infection are body temperature and gut microbiota. However, temperature can also alter interactions among microbes, raising the question of whether and how temperature changes the antiparasitic effects of gut microbiota. Honey bees are agriculturally important hosts of diverse parasites and infection-mitigating gut microbes. They can also socially regulate their body temperatures to an extent unusual for an insect. We show that high temperatures found in honey bee colonies augment the ability of a gut bacterial symbiont to inhibit the growth of a common bee parasite, reducing the parasite's ability to grow at high temperatures. This suggests that fluctuations in colony and body temperatures across life stages and seasons could alter the protective value of bees' gut microbiota against parasites, and that temperature-driven changes in gut microbiota could be an underappreciated mechanism by which temperature-including endothermy and fever-alters animal infection.


Assuntos
Microbioma Gastrointestinal , Microbiota , Parasitos , Abelhas , Animais , Temperatura , Microbioma Gastrointestinal/fisiologia , Bactérias/metabolismo , Lactobacillus/metabolismo , Antiparasitários/metabolismo , Antiparasitários/farmacologia , Mamíferos
7.
Viruses ; 15(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37515283

RESUMO

A metagenomic analysis of the virome of honey bees (Apis mellifera) from an apiary with high rates of unexplained colony losses identified a novel RNA virus. The virus, which was named Apis mellifera solinvivirus 1 (AmSV1), contains a 10.6 kb positive-strand genomic RNA with a single ORF coding for a polyprotein with the protease, helicase, and RNA-dependent RNA polymerase domains, as well as a single jelly-roll structural protein domain, showing highest similarity with viruses in the family Solinviviridae. The injection of honey bee pupae with AmSV1 preparation showed an increase in virus titer and the accumulation of the negative-strand of AmSV1 RNA 3 days after injection, indicating the replication of AmSV1. In the infected worker bees, AmSV1 was present in heads, thoraxes, and abdomens, indicating that this virus causes systemic infection. An analysis of the geographic and historic distribution of AmSV1, using over 900 apiary samples collected across the United States, showed AmSV1 presence since at least 2010. In the year 2021, AmSV1 was detected in 10.45% of apiaries (95%CI: 8.41-12.79%), mostly sampled in June and July in Northwestern and Northeastern United States. The diagnostic methods and information on the AmSV1 distribution will be used to investigate the connection of AmSV1 to honey bee colony losses.


Assuntos
Vírus de RNA , Abelhas/genética , Animais , Estados Unidos , Vírus de RNA/genética , Metagenoma , RNA
8.
J Invertebr Pathol ; 200: 107973, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37479057

RESUMO

Pollinators have experienced significant declines in the past decade, in part due to emerging infectious diseases. Historically, studies have primarily focused on pathogens in the Western honey bee, Apis mellifera. However, recent work has demonstrated that these pathogens are shared by other pollinators and can negatively affect their health. Here, we surveyed honey bees and 15 native bee and wasp species for 13 pathogens traditionally associated with honey bees. The native bee and wasp species included 11 species not previously screened for pathogens. We found at least one honey bee-associated pathogen in 53% of native bee and wasp samples. The most widely distributed and commonly detected pathogens were the microsporidian Nosema ceranae, the bacterium Melissococcus plutonius, and the viruses deformed wing virus and black queen cell virus. The prevalence of viruses was generally higher in honey bees than in native bees and wasps. However, the prevalence of M. plutonius and the brood fungus Ascosphaera apis was significantly higher in some native bee species than in honey bees. The data also reveal novel trends in the association between co-occurring pathogens in honey bees and native bees and wasps at the pathogen community level. These results can inform the assessment of risks that native pollinator species face from pathogen stress, and indicate that many non-viral pathogens, notably M. plutonius and N. ceranae, are far more widely distributed and commonly found in native bees and wasps than previously thought.


Assuntos
Nosema , Vírus de RNA , Vírus , Vespas , Abelhas , Animais , Prevalência
9.
Proc Natl Acad Sci U S A ; 120(26): e2301258120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339224

RESUMO

Novel transmission routes can allow infectious diseases to spread, often with devastating consequences. Ectoparasitic varroa mites vector a diversity of RNA viruses, having switched hosts from the eastern to western honey bees (Apis cerana to Apis mellifera). They provide an opportunity to explore how novel transmission routes shape disease epidemiology. As the principal driver of the spread of deformed wing viruses (mainly DWV-A and DWV-B), varroa infestation has also driven global honey bee health declines. The more virulent DWV-B strain has been replacing the original DWV-A strain in many regions over the past two decades. Yet, how these viruses originated and spread remains poorly understood. Here, we use a phylogeographic analysis based on whole-genome data to reconstruct the origins and demography of DWV spread. We found that, rather than reemerging in western honey bees after varroa switched hosts, as suggested by previous work, DWV-A most likely originated in East Asia and spread in the mid-20th century. It also showed a massive population size expansion following the varroa host switch. By contrast, DWV-B was most likely acquired more recently from a source outside East Asia and appears absent from the original varroa host. These results highlight the dynamic nature of viral adaptation, whereby a vector's host switch can give rise to competing and increasingly virulent disease pandemics. The evolutionary novelty and rapid global spread of these host-virus interactions, together with observed spillover into other species, illustrate how increasing globalization poses urgent threats to biodiversity and food security.


Assuntos
Vírus de RNA , Varroidae , Abelhas , Animais , Vírus de RNA/genética , Evolução Biológica , Interações entre Hospedeiro e Microrganismos , Filogeografia
10.
Proc Natl Acad Sci U S A ; 120(15): e2208116120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011184

RESUMO

The expansion of agriculture is responsible for the mass conversion of biologically diverse natural environments into managed agroecosystems dominated by a handful of genetically homogeneous crop species. Agricultural ecosystems typically have very different abiotic and ecological conditions from those they replaced and create potential niches for those species that are able to exploit the abundant resources offered by crop plants. While there are well-studied examples of crop pests that have adapted into novel agricultural niches, the impact of agricultural intensification on the evolution of crop mutualists such as pollinators is poorly understood. We combined genealogical inference from genomic data with archaeological records to demonstrate that the Holocene demographic history of a wild specialist pollinator of Cucurbita (pumpkins, squashes, and gourds) has been profoundly impacted by the history of agricultural expansion in North America. Populations of the squash bee Eucera pruinosa experienced rapid growth in areas where agriculture intensified within the past 1,000 y, suggesting that the cultivation of Cucurbita in North America has increased the amount of floral resources available to these bees. In addition, we found that roughly 20% of this bee species' genome shows signatures of recent selective sweeps. These signatures are overwhelmingly concentrated in populations from eastern North America where squash bees were historically able to colonize novel environments due to human cultivation of Cucurbita pepo and now exclusively inhabit agricultural niches. These results suggest that the widespread cultivation of crops can prompt adaptation in wild pollinators through the distinct ecological conditions imposed by agricultural environments.


Assuntos
Cucurbita , Humanos , Animais , Abelhas , Cucurbita/genética , Ecossistema , Polinização , Agricultura , Produtos Agrícolas
11.
Commun Biol ; 6(1): 333, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973325

RESUMO

The temperature dependence of infection reflects changes in performance of parasites and hosts. High temperatures often mitigate infection by favoring heat-tolerant hosts over heat-sensitive parasites. Honey bees exhibit endothermic thermoregulation-rare among insects-that can favor resistance to parasites. However, viruses are heavily host-dependent, suggesting that viral infection could be supported-not threatened-by optimum host function. To understand how temperature-driven changes in performance of viruses and hosts shape infection, we compared the temperature dependence of isolated viral enzyme activity, three honey bee traits, and infection of honey bee pupae. Viral enzyme activity varied <2-fold over a > 30 °C interval spanning temperatures typical of ectothermic insects and honey bees. In contrast, honey bee performance peaked at high (≥ 35 °C) temperatures and was highly temperature-sensitive. Although these results suggested that increasing temperature would favor hosts over viruses, the temperature dependence of pupal infection matched that of pupal development, falling only near pupae's upper thermal limits. Our results reflect the host-dependent nature of viruses, suggesting that infection is accelerated-not curtailed-by optimum host function, contradicting predictions based on relative performance of parasites and hosts, and suggesting tradeoffs between infection resistance and host survival that limit the viability of bee 'fever'.


Assuntos
Vírus de RNA , Viroses , Vírus , Animais , Abelhas , Temperatura , Pupa
12.
Front Physiol ; 14: 1149840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994419

RESUMO

Nutritional stress, especially a dearth of pollen, has been linked to honey bee colony losses. Colony-level experiments are critical for understanding the mechanisms by which nutritional stress affects individual honey bee physiology and pushes honey bee colonies to collapse. In this study, we investigated the impact of pollen restriction on key markers of honey bee physiology, main elements of the immune system, and predominant honey bee viruses. To achieve this objective, we uncoupled the effects of behavior, age, and nutritional conditions using a new colony establishment technique designed to control size, demography, and genetic background. Our results showed that the expression of storage proteins, including vitellogenin (vg) and royal jelly major protein 1 (mrjp1), were significantly associated with nursing, pollen ingestion, and older age. On the other hand, genes involved in hormonal regulation including insulin-like peptides (ilp1 and ilp2) and methyl farnesoate epoxidase (mfe), exhibited higher expression levels in young foragers from colonies not experiencing pollen restriction. In contrast, pollen restriction induced higher levels of insulin-like peptides in old nurses. On the other hand, we found a strong effect of behavior on the expression of all immune genes, with higher expression levels in foragers. In contrast, the effects of nutrition and age were significant only the expression of the regulatory gene dorsal. We also found multiple interactions of the experimental variables on viral titers, including higher Deformed wing virus (DWV) titers associated with foraging and age-related decline. In addition, nutrition significantly affected DWV titers in young nurses, with higher titers induced by pollen ingestion. In contrast, higher levels of Black queen cell virus (BQCV) were associated with pollen restriction. Finally, correlation, PCA, and NMDS analyses proved that behavior had had the strongest effect on gene expression and viral titers, followed by age and nutrition. These analyses also support multiple interactions among genes and virus analyzed, including negative correlations between the expression of genes encoding storage proteins associated with pollen ingestion and nursing (vg and mrjp1) with the expression of immune genes and DWV titers. Our results provide new insights into the proximal mechanisms by which nutritional stress is associated with changes in honey bee physiology, immunity, and viral titers.

13.
J Econ Entomol ; 116(3): 662-673, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36930576

RESUMO

Pollen is an essential component of bee diets, and rearing bumble bees (Bombus spp.) for commercial use necessitates feeding pollen in mass quantities. This pollen is collected from honey bee (Apis mellifera L.) colonies because neither an artificial diet nor an economical, large-scale pollen collection process from flowers is available. The provenance of honey bee-collected pollen is often unknown, and in some cases has crossed international borders. Both deformed wing virus (DWV) and the fungal pathogen Ascosphaera apis (Claussen) Olive & Spiltoir (cause of chalkbrood disease); occur in honey bee-collected pollen, and infections have been observed in bumble bees. We used these pathogens as general surrogates for viruses and spore-forming fungal diseases to test the efficacy of 3 sterilization methods, and assessed whether treatment altered pollen quality for the bumble bee. Using honey bee-collected pollen spiked with known doses of DWV and A. apis, we compared gamma irradiation (GI), ozone fumigation (OZ), and ethylene oxide fumigation (EO) against an untreated positive control and a negative control. Following sterilization treatments, we tested A. apis spore viability, detected viral presence with PCR, and tested palatability to the bumble bee Bombus impatiens Cresson. We also measured bacterial growth from pollens treated with EO and GI. GI and EO outperformed OZ treatment in pathogen suppression. EO had the highest sterilizing properties under commercial conditions and retained palatability and supported bee development better than other treatments. These results suggest that EO sterilization reduces pathogen risks while retaining pollen quality as a food source for rearing bumble bees.


Assuntos
Vírus de RNA , Abelhas , Animais , Vírus de RNA/genética , Reação em Cadeia da Polimerase , Pólen , Dieta
14.
PLoS Pathog ; 19(1): e1011061, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656843

RESUMO

Varroa destructor is a cosmopolitan pest and leading cause of colony loss of the European honey bee. Historically described as a competent vector of honey bee viruses, this arthropod vector is the cause of a global pandemic of Deformed wing virus, now endemic in honeybee populations in all Varroa-infested regions. Our work shows that viral spread is driven by Varroa actively switching from one adult bee to another as they feed. Assays using fluorescent microspheres were used to indicate the movement of fluids in both directions between host and vector when Varroa feed. Therefore, Varroa could be in either an infectious or naïve state dependent upon the disease status of their host. We tested this and confirmed that the relative risk of a Varroa feeding depended on their previous host's infectiousness. Varroa exhibit remarkable heterogeneity in their host-switching behavior, with some Varroa infrequently switching while others switch at least daily. As a result, relatively few of the most active Varroa parasitize the majority of bees. This multiple-feeding behavior has analogs in vectorial capacity models of other systems, where promiscuous feeding by individual vectors is a leading driver of vectorial capacity. We propose that the honeybee-Varroa relationship offers a unique opportunity to apply principles of vectorial capacity to a social organism, as virus transmission is both vectored and occurs through multiple host-to-host routes common to a crowded society.


Assuntos
Vírus de RNA , Varroidae , Abelhas , Animais , Vetores Artrópodes
15.
J Econ Entomol ; 116(1): 68-77, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36573405

RESUMO

Landscapes can affect parasite epidemiology in wild and agricultural animals. Honey bees are threatened by loss of floral resources and by parasites, principally the mite Varroa destructor and the viruses it vectors. Existing mite control relies heavily on chemical treatments that can adversely affect bees. Alternative, pesticide-free control methods are needed to mitigate infestation with these ectoparasites. Many flowering plants provide nectar and pollen that confer resistance to parasites. Enrichment of landscapes with antiparasitic floral resources could therefore provide a sustainable means of parasite control in pollinators. Floral rewards of Asteraceae plants can reduce parasitic infection in diverse bee species, including honey and bumble bees. Here, we tested the effects of sunflower (Helianthus annuus) cropland and pollen supplementation on honey bee resistance to macro- and microparasites. Although sunflower had nonsignificant effects on microparasites, We found that increased sunflower pollen availability correlated with reduced Varroa mite infestation in landscapes and pollen-supplemented colonies. At the landscape level, each doubling of sunflower crop area was associated with a 28% reduction in mite infestation. In field trials, late-summer supplementation of colonies with sunflower pollen reduced mite infestation by 2.75-fold relative to artificial pollen. United States sunflower crop acreage has declined by 2% per year since 1980, however, suggesting reduced availability of this floral resource. Although further research is needed to determine whether the observed effects represent direct inhibition of mite fecundity or mite-limiting reductions in honey bee brood-rearing, our findings suggest the potential for sunflower plantings or pollen supplements to counteract a major driver of honey bee losses worldwide.


Assuntos
Asteraceae , Helianthus , Mel , Infestações por Ácaros , Varroidae , Animais , Abelhas , Varroidae/fisiologia , Infestações por Ácaros/prevenção & controle , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia
16.
J Adv Res ; 53: 99-114, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36564001

RESUMO

INTRODUCTION: Honey bees provides valuable pollination services for world food crops and wild flowering plants which are habitats of many animal species and remove carbon dioxide from the atmosphere, a powerful tool in the fight against climate change. Nevertheless, the honey bee population has been declining and the majority of colony losses occur during the winter. OBJECTIVES: The goal of this study was to understand the mechanisms underlying overwinter colony losses and develop novel therapeutic strategies for improving bee health. METHODS: First, pathogen prevalence in overwintering bees were screened between 2015 and 2018. Second, RNA sequencing (RNA-Seq) for transcriptional profiling of overwintering honey bees was conducted and qRT-PCR was performed to confirm the results of the differential expression of selected genes. Lastly, laboratory bioassays were conducted to measure the effects of cold challenges on bee survivorship and stress responses and to assess the effect of a novel medication for alleviating cold stress in honey bees. RESULTS: We identified that sirtuin signaling pathway is the most significantly enriched pathway among the down-regulated differentially expressed genes (DEGs) in overwintering diseased bees. Moreover, we showed that the expression of SIRT1 gene, a major sirtuin that regulates energy and immune metabolism, was significantly downregulated in bees merely exposed to cold challenges, linking cold stress with altered gene expression of SIRT1. Furthermore, we demonstrated that activation of SIRT1 gene expression by SRT1720, an activator of SIRT1 expression, could improve the physiology and extend the lifespan of cold-stressed bees. CONCLUSION: Our study suggests that increased energy consumption of overwintering bees for maintaining hive temperature reduces the allocation of energy toward immune functions, thus making the overwintering bees more susceptible to disease infections and leading to high winter colony losses. The novel information gained from this study provides a promising avenue for the development of therapeutic strategies for mitigating colony losses, both overwinter and annually.


Assuntos
Transdução de Sinais , Sirtuína 1 , Abelhas , Animais , Reação em Cadeia da Polimerase , Suscetibilidade a Doenças , Polinização
17.
Front Insect Sci ; 3: 1216291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469475

RESUMO

Deformed wing virus (DWV) is a widespread pathogen of Apis mellifera honey bees, and is considered a major causative factor for the collapse of infected honey bee colonies. DWV can be horizontally transmitted among bees through various oral routes, including via food sharing and by interactions of bees with viral-contaminated solid hive substrates. Cold plasma ionized hydrogen peroxide (iHP) is used extensively by the food production, processing and medical industries to clean surfaces of microbial contaminants. In this study, we investigated the use of iHP to inactivate DWV particles in situ on a solid substrate. iHP-treated DWV sources were ~105-fold less infectious when injected into naïve honey bee pupae compared to DWV receiving no iHP treatment, matching injected controls containing no DWV. iHP treatment also greatly reduced the incidence of overt DWV infections (i.e., pupae having >109 copies of DWV). The level of DWV inactivation achieved with iHP treatment was higher than other means of viral inactivation such as gamma irradiation, and iHP treatment is likely simpler and safer. Treatment of DWV contaminated hive substrates with iHP, even with honey bees present, may be an effective way to decrease the impacts of DWV infection on honey bees.

18.
Front Microbiol ; 13: 927892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386715

RESUMO

Standing genetic variation is the predominant source acted on by selection. Organisms with high genetic diversity generally show faster responses toward environmental change. Nosema ceranae is a microsporidian parasite of honey bees, infecting midgut epithelial cells. High genetic diversity has been found in this parasite, but the mechanism for the parasite to maintain this diversity remains unclear. This study involved continuous inoculation of N. ceranae to honey bees. We found that the parasites slowly increased genetic diversity over three continuous inoculations. The number of lost single nucleotide variants (SNVs) was balanced with novel SNVs, which were mainly embedded in coding regions. Classic allele frequency oscillation was found at the regional level along the genome, and the associated genes were enriched in apoptosis regulation and ATP binding. The ratio of synonymous and non-synonymous substitution suggests a purifying selection, and our results provide novel insights into the evolutionary dynamics in microsporidian parasites.

19.
Front Cell Infect Microbiol ; 12: 1026154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304932

RESUMO

Nosema ceranae is a honey bee gut parasite that has recently spilled to another honey bee host through trading. The impact of infection on the native host is minor, which is substantial in the novel host. In this study, artificial inoculation simulated the parasite transmission from the native to the novel host. We found that the parasite initiated proliferation earlier in the novel host than in the native host. Additionally, parasite gene expression was significantly higher when infecting the novel host compared with the native host, leading to a significantly higher number of spores. Allele frequencies were similar for spores of parasites infecting both native and novel hosts. This suggests that the high number of spores found in the novel host was not caused by a subset of more fit spores from native hosts. Native hosts also showed a higher number of up-regulated genes in response to infection when compared with novel hosts. Our data further showed that native hosts suppressed parasite gene expression and arguably sacrificed cells to limit the parasite. The results provide novel insights into host defenses and gene selection during a parasite spillover event.


Assuntos
Nosema , Parasitos , Abelhas , Animais , Parasitos/genética , Nosema/genética , Genoma
20.
J Invertebr Pathol ; 194: 107830, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174749

RESUMO

Trypanosomatid gut parasites are common in pollinators and costly for social bees. The recently described honey bee trypanosomatid Lotmaria passim is widespread, abundant, and correlated with colony losses in some studies. The potential for amelioration of infection by antimicrobial plant compounds has been thoroughly studied for closely related trypanosomatids of humans and is an area of active research in bumble bees, but remains relatively unexplored in honey bees. We recently identified several floral volatiles that inhibited growth of L. passim in vitro. Here, we tested the dose-dependent effects of four such compounds on infection, mortality, and food consumption in parasite-inoculated honey bees. We found that diets containing the monoterpenoid carvacrol and the phenylpropanoids cinnamaldehyde and eugenol at > 10-fold the inhibitory concentrations for cell cultures reduced infection, with parasite numbers decreased by > 90 % for carvacrol and cinnamaldehyde and > 99 % for eugenol; effects of the carvacrol isomer thymol were non-significant. However, both carvacrol and eugenol also reduced bee survival, whereas parasite inoculation did not, indicating costs of phytochemical exposure that could exceed those of infection itself. To our knowledge, this is the first controlled screening of phytochemicals for effects on honey bee trypanosomatid infection, identifying potential treatments for managed bees afflicted with a newly characterized, cosmopolitan intestinal parasite.


Assuntos
Anti-Infecciosos , Parasitos , Acroleína/análogos & derivados , Animais , Antiparasitários , Abelhas , Crithidia/parasitologia , Cimenos , Eugenol/farmacologia , Humanos , Compostos Fitoquímicos , Timol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA