Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Anal Chem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953530

RESUMO

Glycans on proteins and lipids play important roles in maturation and cellular interactions, contributing to a variety of biological processes. Aberrant glycosylation has been associated with various human diseases including cancer; however, elucidating the distribution and heterogeneity of glycans in complex tissue samples remains a major challenge. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is routinely used to analyze the spatial distribution of a variety of molecules including N-glycans directly from tissue surfaces. Sialic acids are nine carbon acidic sugars that often exist as the terminal sugars of glycans and are inherently difficult to analyze using MALDI-MSI due to their instability prone to in- and postsource decay. Here, we report on a rapid and robust method for stabilizing sialic acid on N-glycans in FFPE tissue sections. The established method derivatizes and identifies the spatial distribution of α2,3- and α2,6-linked sialic acids through complete methylamidation using methylamine and PyAOP ((7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate). Our in situ approach increases the glycans detected and enhances the coverage of sialylated species. Using this streamlined, sensitive, and robust workflow, we rapidly characterize and spatially localize N-glycans in human tumor tissue sections. Additionally, we demonstrate this method's applicability in imaging mammalian cell suspensions directly on slides, achieving cellular resolution with minimal sample processing and cell numbers. This workflow reveals the cellular locations of distinct N-glycan species, shedding light on the biological and clinical significance of these biomolecules in human diseases.

2.
Mol Oncol ; 18(1): 62-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849446

RESUMO

Hematogenous metastasis limits the survival of colorectal cancer (CRC) patients. Here, we illuminated the roles of CD44 isoforms in this process. Isoforms 3 and 4 were predominantly expressed in CRC patients. CD44 isoform 4 indicated poor outcome and correlated with epithelial-mesenchymal transition (EMT) and decreased oxidative phosphorylation (OxPhos) in patients; opposite associations were found for isoform 3. Pan-CD44 knockdown (kd) independently impaired primary tumor formation and abrogated distant metastasis in CRC xenografts. The xenograft tumors mainly expressed the clinically relevant CD44 isoforms 3 and 4. Both isoforms were enhanced in the paranecrotic, hypoxic tumor regions but were generally absent in lung metastases. Upon CD44 kd, tumor angiogenesis was increased in the paranecrotic areas, accompanied by reduced hypoxia-inducible factor-1α and CEACAM5 but increased E-cadherin expression. Mitochondrial genes and proteins were induced upon pan-CD44 kd, as were OxPhos genes. Hypoxia increased VEGF release from tumor spheres, particularly upon CD44 kd. Genes affected upon CD44 kd in xenografts specifically overlapped concordantly with genes correlating with CD44 isoform 4 (but not isoform 3) in patients, validating the clinical relevance of the used model and highlighting the metastasis-promoting role of CD44 isoform 4.


Assuntos
Angiogênese , Neoplasias Colorretais , Humanos , Xenoenxertos , Linhagem Celular Tumoral , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hipóxia/genética , Regulação Neoplásica da Expressão Gênica
3.
Sci Transl Med ; 14(669): eabj1270, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322632

RESUMO

Immune checkpoint blockade (ICB) has substantially improved the prognosis of patients with cancer, but the majority experiences limited benefit, supporting the need for new therapeutic approaches. Up-regulation of sialic acid-containing glycans, termed hypersialylation, is a common feature of cancer-associated glycosylation, driving disease progression and immune escape through the engagement of Siglec receptors on tumor-infiltrating immune cells. Here, we show that tumor sialylation correlates with distinct immune states and reduced survival in human cancers. The targeted removal of Siglec ligands in the tumor microenvironment, using an antibody-sialidase conjugate, enhanced antitumor immunity and halted tumor progression in several murine models. Using single-cell RNA sequencing, we revealed that desialylation repolarized tumor-associated macrophages (TAMs). We also identified Siglec-E as the main receptor for hypersialylation on TAMs. Last, we found that genetic and therapeutic desialylation, as well as loss of Siglec-E, enhanced the efficacy of ICB. Thus, therapeutic desialylation represents an immunotherapeutic approach to reshape macrophage phenotypes and augment the adaptive antitumor immune response.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Camundongos , Animais , Glicosilação , Macrófagos Associados a Tumor , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral
4.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429072

RESUMO

Applications of nanoparticles (NPs) in the life sciences require control over their properties in protein-rich biological fluids, as an NP quickly acquires a layer of proteins on the surface, forming the so-called "protein corona" (PC). Understanding the composition and kinetics of the PC at the molecular level is of considerable importance for controlling NP interaction with cells. Here, we present a systematic study of hard PC formation on the surface of upconversion nanoparticles (UCNPs) coated with positively-charged polyethyleneimine (PEI) and negatively-charged poly (acrylic acid) (PAA) polymers in serum-supplemented cell culture medium. The rationale behind the choice of UCNP is two-fold: UCNP represents a convenient model of NP with a size ranging from 5 nm to >200 nm, while the unique photoluminescent properties of UCNP enable direct observation of the PC formation, which may provide new insight into this complex process. The non-linear optical properties of UCNP were utilised for direct observation of PC formation by means of fluorescence correlation spectroscopy. Our findings indicated that the charge of the surface polymer coating was the key factor for the formation of PC on UCNPs, with an ensuing effect on the NP-cell interactions.


Assuntos
Nanopartículas , Coroa de Proteína , Polímeros , Comunicação Celular , Polietilenoimina
5.
Cell Rep ; 40(7): 111181, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977490

RESUMO

The molecular repertoire promoting cancer cell plasticity is not fully elucidated. Here, we propose that glycosphingolipids (GSLs), specifically the globo and ganglio series, correlate and promote the transition between epithelial and mesenchymal cells. The epithelial character of ovarian cancer remains stable throughout disease progression, and spatial glycosphingolipidomics reveals elevated globosides in the tumor compartment compared with the ganglioside-rich stroma. CRISPR-Cas9 knockin mediated truncation of endogenous E-cadherin induces epithelial-to-mesenchymal transition (EMT) and decreases globosides. The transcriptomics analysis identifies the ganglioside-synthesizing enzyme ST8SIA1 to be consistently elevated in mesenchymal-like samples, predicting poor outcome. Subsequent deletion of ST8SIA1 induces epithelial cell features through mTORS2448 phosphorylation, whereas loss of globosides in ΔA4GALT cells, resulting in EMT, is accompanied by increased ERKY202/T204 and AKTS124. The GSL composition dynamics corroborate cancer cell plasticity, and further evidence suggests that mesenchymal cells are maintained through ganglioside-dependent, calcium-mediated mechanisms.


Assuntos
Glicoesfingolipídeos , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Gangliosídeos/metabolismo , Globosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Humanos , Transdução de Sinais
6.
J Virol ; 96(17): e0099922, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000846

RESUMO

Arthritogenic alphaviruses are mosquito-borne arboviruses that include several re-emerging human pathogens, including the chikungunya (CHIKV), Ross River (RRV), Mayaro (MAYV), and o'nyong-nyong (ONNV) virus. Arboviruses are transmitted via a mosquito bite to the skin. Herein, we describe intradermal RRV infection in a mouse model that replicates the arthritis and myositis seen in humans with Ross River virus disease (RRVD). We show that skin infection with RRV results in the recruitment of inflammatory monocytes and neutrophils, which together with dendritic cells migrate to draining lymph nodes (LN) of the skin. Neutrophils and monocytes are productively infected and traffic virus from the skin to LN. We show that viral envelope N-linked glycosylation is a key determinant of skin immune responses and disease severity. RRV grown in mammalian cells elicited robust early antiviral responses in the skin, while RRV grown in mosquito cells stimulated poorer early antiviral responses. We used glycan mass spectrometry to characterize the glycan profile of mosquito and mammalian cell-derived RRV, showing deglycosylation of the RRV E2 glycoprotein is associated with curtailed skin immune responses and reduced disease following intradermal infection. Altogether, our findings demonstrate skin infection with an arthritogenic alphavirus leads to musculoskeletal disease and envelope glycoprotein glycosylation shapes disease outcome. IMPORTANCE Arthritogenic alphaviruses are transmitted via mosquito bites through the skin, potentially causing debilitating diseases. Our understanding of how viral infection starts in the skin and how virus systemically disseminates to cause disease remains limited. Intradermal arbovirus infection described herein results in musculoskeletal pathology, which is dependent on viral envelope N-linked glycosylation. As such, intradermal infection route provides new insights into how arboviruses cause disease and could be extended to future investigations of skin immune responses following infection with other re-emerging arboviruses.


Assuntos
Infecções por Alphavirus , Artrite , Miosite , Polissacarídeos , Ross River virus , Pele , Infecções por Alphavirus/complicações , Infecções por Alphavirus/imunologia , Animais , Antivirais/imunologia , Artrite/complicações , Artrite/imunologia , Culicidae/virologia , Células Dendríticas , Modelos Animais de Doenças , Glicosilação , Humanos , Espectrometria de Massas , Camundongos , Monócitos , Miosite/complicações , Miosite/imunologia , Neutrófilos , Polissacarídeos/química , Polissacarídeos/imunologia , Ross River virus/imunologia , Pele/imunologia , Pele/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
7.
FEMS Microbiol Rev ; 46(3)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35104861

RESUMO

Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.


Assuntos
Bactérias , Biofilmes , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Polissacarídeos/metabolismo , Streptococcus/metabolismo
8.
iScience ; 24(10): 103168, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34646995

RESUMO

Integrin alpha 2 (ITGA2) promotes cancer metastasis through selective adhesion to ECM proteins; however, the specific contribution of integrin glycosylation remains uncertain. We provide evidence that ITGA2 is a highly glycosylated transmembrane protein expressed in ovarian cancer tissue and cell lines. In-depth glycoproteomics identified predominant N- and O-glycosylation sites harboring substantially divergent ITGA2 glycosylation profiles. Generated putative ITGA2 N-glycosite mutants halted collagen and laminin binding and cells lacking N-glycosylated ITGA2 were marginally adherent to collagen, likely associated with its enhanced proteasome degradation through poly-ubiquitination. Proteomic and enrichment pathway analysis revealed increased cellular apoptosis and collagen organization in non-glycosylated ITGA2 mutant cells. Moreover, we provide evidence that ITGA2-specific sialylation is involved in selective cell-ECM binding. These results highlight the importance of glycans in regulating ITGA2 stability and ligand binding capacity which in turn modulates downstream focal adhesion and promotes cell survival in a collagen environment.

9.
Oncotarget ; 12(21): 2188-2205, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676051

RESUMO

Aberrant protein glycosylation is a prominent cancer feature. While many tumour-associated glycoepitopes have been reported, advances in glycoanalytics continue to uncover new associations between glycosylation and cancer. Guided by a comprehensive literature survey suggesting that oligomannosylation (Man5-9 GlcNAc2) is a widespread and often regulated glycosignature in human cancers, we here revisit a valuable compilation of nearly 500 porous graphitized carbon LC-MS/MS N-glycomics datasets acquired across 11 human cancer types to systematically test for oligomannose-cancer associations. Firstly, the quantitative glycomics data obtained across 34 cancerous cell lines demonstrated that oligomannosylation is a pan-cancer feature spanning in a wide abundance range. In keeping with literature, our quantitative glycomics data of tumour and matching control tissues and new MALDI-MS imaging data of tissue microarrays showed a strong cancer-associated elevation of oligomannosylation in both basal cell (p = 1.78 × 10-12) and squamous cell (p = 1.23 × 10-11) skin cancer and colorectal cancer (p = 8.0 × 10-4). The glycomics data also indicated that some cancer types including gastric and liver cancer exhibit unchanged or reduced oligomannose levels, observations also supported by literature and MALDI-MS imaging data. Finally, expression data from public cancer repositories indicated that several α1,2-mannosidases are regulated in tumour tissues suggesting that these glycan-processing enzymes may contribute to the cancer-associated modulation of oligomannosylation. This omics-centric study has compiled robust glycomics and enzyme expression data revealing interesting molecular trends that open avenues to better understand the role of oligomannosylation in human cancers.

10.
ACS Cent Sci ; 7(1): 110-125, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33532574

RESUMO

Heterogeneity in phenotypes of malignantly transformed cells and aberrant glycan expression on their surface are two prominent hallmarks of cancers that have hitherto not been linked to each other. In this paper, we identify differential levels of a specific glycan linkage: α2,6-linked sialic acids within breast cancer cells in vivo and in culture. Upon sorting out two populations with moderate, and relatively higher, cell surface α2,6-linked sialic acid levels from the triple-negative breast cancer cell line MDA-MB-231, both populations (denoted as medium and high 2,6-Sial cells, respectively) stably retained their levels in early passages. Upon continuous culturing, medium 2,6-Sial cells recapitulated the heterogeneity of the unsorted line whereas high 2,6-Sial cells showed no such tendency. Compared with high 2,6-Sial cells, the medium 2,6-Sial counterparts showed greater adhesion to reconstituted extracellular matrices (ECMs) and invaded faster as single cells. The level of α2,6-linked sialic acids in the two sublines was found to be consistent with the expression of a specific glycosyl transferase, ST6GAL1. Stably knocking down ST6GAL1 in the high 2,6-Sial cells enhanced their invasiveness. When cultured together, medium 2,6-Sial cells differentially migrated to the edge of growing tumoroid-like cocultures, whereas high 2,6-Sial cells formed the central bulk. Multiscale simulations in a Cellular Potts model-based computational environment calibrated to our experimental findings suggest that differential levels of cell-ECM adhesion, likely regulated by α2,6-linked sialic acids, facilitate niches of highly invasive cells to efficiently migrate centrifugally as the invasive front of a malignant breast tumor.

11.
Biomolecules ; 11(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418847

RESUMO

Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.


Assuntos
Transição Epitelial-Mesenquimal , Glicoesfingolipídeos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/química , Humanos , Modelos Biológicos , Transdução de Sinais
12.
Angew Chem Int Ed Engl ; 60(6): 3283-3289, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174390

RESUMO

1 H NMR spectroscopic studies on the 1:1 adduct of the pentasaccharide Fondaparinux (FPX) and the substitution-inert polynuclear platinum complex TriplatinNC show significant modulation of geometry around the glycosidic linkages of the FPX constituent monosaccharides. FPX is a valid model for the highly sulfated cell signalling molecule heparan sulfate (HS). The conformational ratio of the 1 C4 :2 S0 forms of the FPX residue IdoA(2S) is altered from ca. 35:65 (free FPX) to ca. 75:25 in the adduct; the first demonstration of a small molecule affecting conformational changes on a HS oligosaccharide. Functional consequences of such binding are suggested to be inhibition of HS cleavage in MDA-MB-231 triple-negative breast cancer (TNBC) cells. We further describe inhibition of metastasis by TriplatinNC in the TNBC 4T1 syngeneic tumour model. Our work provides insight into a novel approach for design of platinum drugs (and coordination compounds in general) with intrinsic anti-metastatic potential.


Assuntos
Antineoplásicos/química , Glicosaminoglicanos/química , Ácido Idurônico/química , Compostos Organoplatínicos/química , Platina/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Heparitina Sulfato/química , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacologia
13.
Sci Transl Med ; 12(570)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208501

RESUMO

The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum ß-lactamase (ESBL)-producing bacteria is a critical threat to human health, and alternative treatment strategies are urgently required. We investigated the ability of the hydroxyquinoline analog ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 resensitized Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less toxic next-generation polymyxin derivative FADDI-287, in vitro. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin-resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + polymyxin (colistin or FADDI-287) for the treatment of Gram-negative sepsis in immunocompetent mice. In comparison to polymyxin alone, the combination of PBT2 + polymyxin improved survival and reduced bacterial dissemination to the lungs and spleen of infected mice. These data present a treatment modality to break antibiotic resistance in high-priority polymyxin-resistant Gram-negative pathogens.


Assuntos
Proteínas de Escherichia coli , Doenças Neurodegenerativas , Preparações Farmacêuticas , Sepse , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Colistina/farmacologia , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Proteínas de Escherichia coli/farmacologia , Klebsiella pneumoniae , Camundongos , Testes de Sensibilidade Microbiana , Sepse/tratamento farmacológico
14.
Antibiotics (Basel) ; 9(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158121

RESUMO

Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Antibiotic treatment failure rates of 20-40% have been observed. The role host cell glycans play in GAS biofilm formation in the context of GAS pharyngitis and subsequent antibiotic treatment failure has not been previously investigated. GAS serotype M12 GAS biofilms were assessed for biofilm formation on Detroit 562 pharyngeal cell monolayers following enzymatic removal of all N-linked glycans from pharyngeal cells with PNGase F. Removal of N-linked glycans resulted in an increase in biofilm biomass compared to untreated controls. Further investigation into the removal of terminal mannose and sialic acid residues with α1-6 mannosidase and the broad specificity sialidase (Sialidase A) also found that biofilm biomass increased significantly when compared to untreated controls. Increases in biofilm biomass were associated with increased production of extracellular polymeric substances (EPS). Furthermore, it was found that M12 GAS biofilms grown on untreated pharyngeal monolayers exhibited a 2500-fold increase in penicillin tolerance compared to planktonic GAS. Pre-treatment of monolayers with exoglycosidases resulted in a further doubling of penicillin tolerance in resultant biofilms. Lastly, an additional eight GAS emm-types were assessed for biofilm formation in response to terminal mannose and sialic acid residue removal. As seen for M12, biofilm biomass on monolayers increased following removal of terminal mannose and sialic acid residues. Collectively, these data demonstrate that pharyngeal cell surface glycan structures directly impact GAS biofilm formation in a strain and glycan specific fashion.

15.
Sci Adv ; 6(21): eaaz4926, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494740

RESUMO

Cholesterol-dependent cytolysins (CDCs) form pores in cholesterol-rich membranes, but cholesterol alone is insufficient to explain their cell and host tropism. Here, we show that all eight major CDCs have high-affinity lectin activity that identifies glycans as candidate cellular receptors. Streptolysin O, vaginolysin, and perfringolysin O bind multiple glycans, while pneumolysin, lectinolysin, and listeriolysin O recognize a single glycan class. Addition of exogenous carbohydrate receptors for each CDC inhibits toxin activity. We present a structure for suilysin domain 4 in complex with two distinct glycan receptors, P1 antigen and αGal/Galili. We report a wide range of binding affinities for cholesterol and for the cholesterol analog pregnenolone sulfate and show that CDCs bind glycans and cholesterol independently. Intermedilysin binds to the sialyl-TF O-glycan on its erythrocyte receptor, CD59. Removing sialyl-TF from CD59 reduces intermedilysin binding. Glycan-lectin interactions underpin the cellular tropism of CDCs and provide molecular targets to block their cytotoxic activity.


Assuntos
Colesterol , Citotoxinas , Colesterol/metabolismo , Citotoxinas/química , Citotoxinas/farmacologia , Lectinas , Polissacarídeos , Receptores de Superfície Celular
16.
Mol Neurobiol ; 57(2): 964-975, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31646464

RESUMO

Polysialic acid (polySia), a long homopolymer of 2,8-linked sialic acids, is abundant in the embryonic brain and is restricted largely in adult brain to regions that exhibit neurogenesis and structural plasticity. In the central nervous system (CNS), polySia is highly important for cell-cell interactions, differentiation, migration and cytokine responses, which are critical neuronal functions regulating intercellular interactions that underlie immune signalling in the CNS. In recent reports, a metabolite of morphine, morphine-3-glucuronide (M3G), has been shown to cause immune signalling in the CNS. In this study, we compared the effects of neurite growth factor (NGF), lipopolysaccharide (LPS) and M3G exposure on the expression of polySia in PC12 cells using immunocytochemistry and Western blot analysis. PolySia was also extracted from stimulated cell proteins by endo-neuraminidase digestion and quantitated using fluorescent labelling followed by HPLC analysis. PolySia expression was significantly increased following NGF, M3G or LPS stimulation when compared with unstimulated cells or cells exposed to the TLR4 antagonist LPS-RS. Additionally, we analyzed the effects of test agent exposure on cell migration and the oxidative stress response of these cells in the presence and absence of polySia expression on their cell surface. We observed an increase in oxidative stress in cells without polySia as well as following M3G or LPS stimulation. Our study provides evidence that polySia expression in neuronal-like PC12 cells is influenced by M3G and LPS exposure alike, suggestive of a role of TLR4 in triggering these events.


Assuntos
Lipopolissacarídeos/farmacologia , Derivados da Morfina/farmacologia , Ácidos Siálicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Derivados da Morfina/metabolismo , Neuraminidase/metabolismo , Células PC12 , Ratos , Transdução de Sinais/imunologia
17.
ACS Infect Dis ; 6(1): 50-55, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31697892

RESUMO

Neisseria gonorrhoeae (N. gonorrhoeae) causes the sexually transmitted disease gonorrhea, which has a global incidence of 106 million cases per year. No vaccine is available to prevent the disease, and the emergence of multidrug resistant (MDR) strains makes N. gonorrhoeae an immediate public health threat. Here, we show that an ionophore, PBT2, can reverse the intrinsic resistance of N. gonorrhoeae to polymyxin B and colistin. These antibiotics administered in combination with PBT2 may be an effective path to treat MDR gonococcal infections.


Assuntos
Antibacterianos/farmacologia , Clioquinol/análogos & derivados , Colistina/farmacologia , Neisseria gonorrhoeae/efeitos dos fármacos , Polimixina B/farmacologia , Clioquinol/farmacologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana
18.
Front Immunol ; 10: 1967, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507595

RESUMO

Human CD52 is a small glycopeptide (12 amino acid residues) with one N-linked glycosylation site at asparagine 3 (Asn3) and several potential O-glycosylation serine/threonine sites. Soluble CD52 is released from the surface of activated T cells and mediates immune suppression via its glycan moiety. In suppressing activated T cells, it first sequesters the pro-inflammatory high mobility group Box 1 (HMGB1) protein, which facilitates its binding to the inhibitory sialic acid-binding immunoglobulin-like lectin-10 (Siglec-10) receptor. We aimed to identify the features of CD52 glycan that underlie its bioactivity. Analysis of native CD52 purified from human spleen revealed extensive heterogeneity in N-glycosylation and multi-antennary sialylated N-glycans with abundant polyLacNAc extensions, together with mainly di-sialylated O-glycosylation type structures. Glycomic (porous graphitized carbon-ESI-MS/MS) and glycopeptide (C8-LC-ESI-MS) analysis of recombinant soluble human CD52-immunoglobulin Fc fusion proteins revealed that CD52 bioactivity was correlated with a high abundance of tetra-antennary α-2,3/6 sialylated N-glycans. Removal of α-2,3 sialylation abolished bioactivity, which was restored by re-sialylation with α-2,3 sialyltransferases. When glycoforms of CD52-Fc were fractionated by anion exchange MonoQ-GL chromatography, bioactive fractions displayed mainly tetra-antennary, α-2,3 sialylated N-glycan structures and a lower relative abundance of bisecting GlcNAc structures compared to non-bioactive fractions. In addition, O-glycan core type-2 di-sialylated structures at Ser12 were more abundant in bioactive CD52 fractions. Understanding the structural features of CD52 glycan required for its bioactivity will aid its development as an immunotherapeutic agent.


Assuntos
Antígeno CD52/imunologia , Antígeno CD52/metabolismo , Imunomodulação , Antígeno CD52/sangue , Antígeno CD52/isolamento & purificação , Cromatografia por Troca Iônica , Ensaio de Imunoadsorção Enzimática , Glicosilação , Humanos , Polissacarídeos/metabolismo , Proteínas Recombinantes , Baço/imunologia , Baço/metabolismo
19.
Proteomics ; 19(21-22): e1800482, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31364262

RESUMO

Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N-glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor-specific N-glycan alterations in ovarian cancer development and progression. matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N-glycan distribution on formalin-fixed paraffin-embedded ovarian cancer tissue sections from early- and late-stage patients. Tumor-specific N-glycans are identified and structurally characterized by porous graphitized carbon-liquid chromatography-electrospray ionization-tandem mass spectrometry (PGC-LC-ESI-MS/MS), and then assigned to high-resolution images obtained from MALDI-MSI. Spatial distribution of 14 N-glycans is obtained by MALDI-MSI and 42 N-glycans (including structural and compositional isomers) identified and structurally characterized by LC-MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N-glycan families are localized to the tumor regions of late-stage ovarian cancer patients relative to early-stage patients. Potential N-glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3 (GlcNAc)2 , and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3 (GlcNAc)2 . The distribution of these markers is evaluated using a tissue microarray of early- and late-stage patients.


Assuntos
Biomarcadores Tumorais/genética , Cistadenoma Seroso/genética , Neoplasias Ovarianas/genética , Polissacarídeos/genética , Biomarcadores Tumorais/química , Cromatografia Líquida , Cistadenoma Seroso/patologia , Feminino , Genômica/métodos , Glicosilação , Humanos , Imagem Molecular , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microambiente Tumoral/genética
20.
Proteomics ; 19(21-22): e1900010, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419058

RESUMO

While aberrant protein glycosylation is a recognized characteristic of human cancers, advances in glycoanalytics continue to discover new associations between glycoproteins and tumorigenesis. This glycomics-centric study investigates a possible link between protein paucimannosylation, an under-studied class of human N-glycosylation [Man1-3 GlcNAc2 Fuc0-1 ], and cancer. The paucimannosidic glycans (PMGs) of 34 cancer cell lines and 133 tissue samples spanning 11 cancer types and matching non-cancerous specimens are profiled from 467 published and unpublished PGC-LC-MS/MS N-glycome datasets collected over a decade. PMGs, particularly Man2-3 GlcNAc2 Fuc1 , are prominent features of 29 cancer cell lines, but the PMG level varies dramatically across and within the cancer types (1.0-50.2%). Analyses of paired (tumor/non-tumor) and stage-stratified tissues demonstrate that PMGs are significantly enriched in tumor tissues from several cancer types including liver cancer (p = 0.0033) and colorectal cancer (p = 0.0017) and is elevated as a result of prostate cancer and chronic lymphocytic leukaemia progression (p < 0.05). Surface expression of paucimannosidic epitopes is demonstrated on human glioblastoma cells using immunofluorescence while biosynthetic involvement of N-acetyl-ß-hexosaminidase is indicated by quantitative proteomics. This intriguing association between protein paucimannosylation and human cancers warrants further exploration to detail the biosynthesis, cellular location(s), protein carriers, and functions of paucimannosylation in tumorigenesis and metastasis.


Assuntos
Manose/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Progressão da Doença , Glicosilação , Humanos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA