RESUMO
Melanoma-associated leptomeningeal disease (M-LMD) occurs when circulating tumor cells (CTCs) enter into the cerebral spinal fluid (CSF) and colonize the meninges, the membrane layers that protect the brain and the spinal cord. Once established, the prognosis for M-LMD patients is dismal, with overall survival ranging from weeks to months. This is primarily due to a paucity in our understanding of the disease and, as a consequence, the availability of effective treatment options. Defining the underlying biology of M-LMD will significantly improve the ability to adapt available therapies for M-LMD treatment or design novel inhibitors for this universally fatal disease. A major barrier, however, lies in obtaining sufficient quantities of CTCs from the patient-derived CSF (CSF-CTCs) to conduct preclinical experiments, such as molecular characterization, functional analysis, and in vivo efficacy studies. Culturing CSF-CTCs ex vivo has also proven to be challenging. To address this, a novel protocol for the culture of patient-derived M-LMD CSF-CTCs ex vivo and in vivo is developed. The incorporation of conditioned media produced by human meningeal cells (HMCs) is found to be critical to the procedure. Cytokine array analysis reveals that factors produced by HMCs, such as insulin-like growth factor-binding proteins (IGFBPs) and vascular endothelial growth factor-A (VEGF-A), are important in supporting CSF-CTC survival ex vivo. Here, the usefulness of the isolated patient-derived CSF-CTC lines is demonstrated in determining the efficacy of inhibitors that target the insulin-like growth factor (IGF) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, the ability to intrathecally inoculate these cells in vivo to establish murine models of M-LMD that can be employed for preclinical testing of approved or novel therapies is shown. These tools can help unravel the underlying biology driving CSF-CTC establishment in the meninges and identify novel therapies to reduce the morbidity and mortality associated with M-LMD.
Assuntos
Melanoma , Células Neoplásicas Circulantes , Humanos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular , Encéfalo , Membrana CelularRESUMO
BACKGROUND: Leptomeningeal disease (LMD) occurs as a late complication of several human cancers and has no rationally designed treatment options. A major barrier to developing effective therapies for LMD is the lack of cell-based or preclinical models that recapitulate human disease. Here, we describe the development of in vitro and in vivo cultures of patient-derived cerebrospinal fluid circulating tumor cells (PD-CSF-CTCs) from patients with melanoma as a preclinical model to identify exploitable vulnerabilities in melanoma LMD. METHODS: CSF-CTCs were collected from melanoma patients with melanoma-derived LMD and cultured ex vivo using human meningeal cell-conditioned media. Using immunoassays and RNA-sequencing analyses of PD-CSF-CTCs, molecular signaling pathways were examined and new therapeutic targets were tested for efficacy in PD-CSF-CTCs preclinical models. RESULTS: PD-CSF-CTCs were successfully established both in vitro and in vivo. Global RNA analyses of PD-CSF-CTCs revealed several therapeutically tractable targets. These studies complimented our prior proteomic studies highlighting IGF1 signaling as a potential target in LMD. As a proof of concept, combining treatment of ceritinib and trametinib in vitro and in vivo demonstrated synergistic antitumor activity in PD-CSF-CTCs and BRAF inhibitor-resistant melanoma cells. CONCLUSIONS: This study demonstrates that CSF-CTCs can be grown in vitro and in vivo from some melanoma patients with LMD and used as preclinical models. These models retained melanoma expression patterns and had signaling pathways that are therapeutically targetable. These novel models/reagents may be useful in developing rationally designed treatments for LMD.
Assuntos
Melanoma , Neoplasias Meníngeas , Células Neoplásicas Circulantes , Meios de Cultivo Condicionados , Humanos , Melanoma/patologia , Neoplasias Meníngeas/patologia , Proteômica , Proteínas Proto-Oncogênicas B-raf/genética , RNARESUMO
The use of immune checkpoint inhibitors including ipilimumab and nivolumab has expanded for several tumors including melanoma brain metastasis. These have resulted in a growing spectrum of neurologic immune-related adverse events, including ones that are rare and difficult to diagnose and treat. Here, we present a patient with melanoma brain metastasis who was treated with immune checkpoint inhibitors and developed an Acute Motor Axonal Neuropathy. To our knowledge, this is the first case of Acute Motor Axonal Neuropathy as an immune-related adverse event associated with combination treatment of ipilimumab and nivolumab, who was successfully treated. A 28-year-old woman with metastatic BRAF V600E melanoma developed melanoma brain metastasis and was enrolled on Checkmate 204, a Phase 2 clinical trial using ipilimumab (3 mg/kg intravenous) and nivolumab (1 mg/kg intravenous) every 3 weeks for four cycles, followed by monotherapy with nivolumab (240 mg intravenous) every 2 weeks. A few days after Cycle 2 of ipilimumab and nivolumab, she developed a pure motor axonal neuropathy consistent with Acute Motor Axonal Neuropathy. She was treated with several immunosuppressive treatments including high dose methylprednisolone, immune globulin, and infliximab, and her motor neuropathy eventually improved several months after onset of symptoms. Unfortunately, she had progression of her systemic disease and died several months later. This is the first case reported of Acute Motor Axonal Neuropathy associated with ipilimumab and nivolumab, successfully treated with immune-suppressive therapy. As the field of immunotherapy expands with the increasing use of the immune checkpoint inhibitors, it is critical to increase our knowledge and understanding of the neurologic immune-related adverse events associated with immune checkpoint inhibitors. This includes the spectrum of rare neurologic immune-related adverse events, which can be quite difficult to recognize and treat. Early consultations with neurology may expedite a diagnosis and treatment plan in patients with unexplained weakness receiving immune checkpoint inhibitor therapy.
RESUMO
In February 2018, the Melanoma Research Foundation and the Moffitt Cancer Center hosted the Second Summit on Melanoma Central Nervous System Metastases in Tampa, Florida. The meeting included investigators from multiple academic centers and disciplines. A consensus summary of the progress and challenges in melanoma parenchymal brain metastases was published (Eroglu et al., Pigment Cell & Melanoma Research, 2019, 32, 458). Here, we will describe the current state of basic, translational, clinical research, and therapeutic management, for melanoma patients with leptomeningeal disease. We also outline key challenges and barriers to be overcome to make progress in this deadly disease.
Assuntos
Melanoma/complicações , Neoplasias Meníngeas/complicações , Neoplasias Meníngeas/terapia , Ácidos Nucleicos Livres/metabolismo , Ensaios Clínicos como Assunto , Humanos , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/epidemiologia , Terapia de Alvo Molecular , Células Neoplásicas Circulantes/patologiaRESUMO
INTRODUCTION: A patient who was initially considered to have a glioblastoma (GBM) had molecular analysis, showing that it was a pleomorphic xanthoastrocytoma (PXA). Up to 78% of PXA tumors have BRAF V600E mutations. Primary brain tumors with BRAF mutations can have a good response to BRAF MEK inhibitors (BRAF MEKi), and there may be a synergistic response when combined with autophagy inhibitors. PRESENTATION OF THE CASE: A 20-year-old man found to have a large brain mass with midline shift underwent resection. He was diagnosed with "GBM" and treated with radiation and temozolomide with subsequent disease recurrence. Review of histology showed malignant PXA with BRAF V600E mutation. Treatment with Dabrafenib and Trametinib was started, and tumor size increased in size after 14 months of treatment. Given studies showing that resistance to BRAF inhibition can be overcome by autophagy inhibition, chloroquine was added. Patient has been on "triple" therapy for 15 months and has radiographically Stable Disease. At MCC, 3% of patients with gliomas have BRAF mutations who could potentially benefit from this combination therapy. CONCLUSION: This is the first report of a PXA patient receiving therapy with BRAF MEKi and an autophagy inhibitor with prolonged stable disease. This patient highlights the importance of a molecular interrogation in gliomas to provide an integrated diagnosis and effective treatment. This may be useful in up to 3% of glioma patients with BRAF mutations. Molecular testing in neuro-oncology is providing new avenues of diagnosis and treatment, and detailed molecular interrogation should be considered routine.