Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Data ; 11(1): 674, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909019

RESUMO

Improved understanding of crops' response to soil water stress is important to advance soil-plant system models and to support crop breeding, crop and varietal selection, and management decisions to minimize negative impacts. Studies on eco-physiological crop characteristics from leaf to canopy for different soil water conditions and crops are often carried out at controlled conditions. In-field measurements under realistic field conditions and data of plant water potential, its links with CO2 and H2O gas fluxes, and crop growth processes are rare. Here, we presented a comprehensive data set collected from leaf to canopy using sophisticated and comprehensive sensing techniques (leaf chlorophyll, stomatal conductance and photosynthesis, canopy CO2 exchange, sap flow, and canopy temperature) including detailed crop growth characteristics based on destructive methods (crop height, leaf area index, aboveground biomass, and yield). Data were acquired under field conditions with contrasting soil types, water treatments, and different cultivars of wheat and maize. The data from 2016 up to now will be made available for studying soil/water-plant relations and improving soil-plant-atmospheric continuum models.


Assuntos
Produtos Agrícolas , Solo , Triticum , Zea mays , Zea mays/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Folhas de Planta , Fotossíntese , Água , Dióxido de Carbono/metabolismo , Biomassa
2.
Sci Total Environ ; 916: 170163, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242455

RESUMO

Agricultural Biodiversity dynamics has been evaluated by social metabolism or by landscape structure-function analysis. In this study, by using ELIA modeling, we used both methods in combination to understand how the interplay between social metabolism and landscape structure-function can affect biodiversity pattern distribution. We used energy reinvestment (E) as an indicator of social metabolism and landscape heterogeneity (Le) as an indicator of landscape structure-function. We propose a research hypothesis to analyze biodiversity patterns considering four different clusters identified based on high or low E or Le. As cluster 1, we defined E as high and Le as low and associated natural ecosystems to it. These ecosystems are expected to contain high species abundance but low richness. As cluster 2, both E and Le were defined as high and semi-natural ecosystems were associated to it, where nature friendly farm system developed. In these ecosystems, high species abundance and richness are expected. Cluster 3 with low E and Le was associated intensive farmland, which is due to the simplification of the landscape. Here, low energy reinvestment and landscape heterogeneity confirm that ecosystem services related to biodiversity have been drastically reduced. Lastly, cluster 4 with low E but high Le refers to intensive mosaics of farmland and pasture. In this cluster, the biodiversity richness index is high due to spatial landscape diversity, but the biodiversity abundance index is low due to the lack of energy reinvestment. We evaluate the proposed hypothesis for biodiversity analysis in the Qazvin province, emphasizing the interplay between energy availability and landscape heterogeneity in shaping ecological communities. This study highlights the importance of understanding biodiversity patterns at spatial scale and emphasizes the need for interdisciplinary research to address conservation and sustainability challenges. Our approach would be very useful where there is lack of biodiversity data.


Assuntos
Biodiversidade , Ecossistema , Agricultura/métodos , Fazendas , Conservação dos Recursos Naturais/métodos
3.
Heliyon ; 9(11): e22173, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053865

RESUMO

Finding consensus in definitions of commonly-used terms and concepts is a key requirement to enable cooperations between interdisciplinary scientists and practitioners in inter- or transdisciplinary projects. In research on sustainable agriculture, the term 'landscape' is emphasised in particular, being used in studies that range from biogeochemical to socio-economic topics. However, it is normally used in a rather unspecific manner. Moreover, different disciplines assign deviating meanings to this term, which impedes interdisciplinary understanding and synthesis. To close this gap, a systematic literature review from relevant disciplines was conducted to identify a common understanding of the term "landscape". Three general categories of landscape conceptualizations were identified. In a small subset of studies, "landscape" is defined by area size or by natural or anthropogenic borders. The majority of reviewed papers, though, define landscapes as sets of relationships between various elements. Selection of respective elements differed widely depending on research objects. Based on these findings, a new definition of landscape is proposed, which can be operationalized by interdisciplinary researchers to define a common study object and which allows for sufficient flexibility depending on specific research questions. It also avoids over-emphasis on specific spatio-temporal relations at the "landscape scale", which may be context-dependent. Agricultural landscape research demands for study-specific definitions which should be meticulously provided in the future.

4.
Heliyon ; 9(11): e21215, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964818

RESUMO

Transformation of agriculture to realise sustainable site-specific management requires comprehensive scientific support based on field experiments to capture the complex agroecological process, incite new policies and integrate them into farmers' decisions. However, current experimental approaches are limited in addressing the wide spectrum of sustainable agroecosystem and landscape characteristics and in supplying stakeholders with suitable solutions and measures. This review identifies major constraints in current field experimentation, such as a lack of consideration of multiple processes and scales and a limited ability to address interactions between them. It emphasizes the urgent need to establish a new category of landscape experimentation that empowers agricultural research on sustainable agricultural systems, aiming at elucidating interactions among various landscape structures and functions, encompassing both natural and anthropogenic features. It extensively discusses the key characteristics of landscape experiments and major opportunities to include them in the agricultural research agenda. In particular, simultaneously considering multiple factors, and thus processes at different scales and possible synergies or antagonisms among them would boost our understanding of heterogeneous agricultural landscapes. We also highlight that though various studies identified promising approaches with respect to experimental design and data analysis, further developments are still required to build a fully functional and integrated framework for landscape experimentation in agricultural settings.

5.
Sci Data ; 10(1): 672, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789016

RESUMO

The production of crops secure the human food supply, but climate change is bringing new challenges. Dynamic plant growth and corresponding environmental data are required to uncover phenotypic crop responses to the changing environment. There are many datasets on above-ground organs of crops, but roots and the surrounding soil are rarely the subject of longer term studies. Here, we present what we believe to be the first comprehensive collection of root and soil data, obtained at two minirhizotron facilities located close together that have the same local climate but differ in soil type. Both facilities have 7m-long horizontal tubes at several depths that were used for crosshole ground-penetrating radar and minirhizotron camera systems. Soil sensors provide observations at a high temporal and spatial resolution. The ongoing measurements cover five years of maize and wheat trials, including drought stress treatments and crop mixtures. We make the processed data available for use in investigating the processes within the soil-plant continuum and the root images to develop and compare image analysis methods.

6.
Nat Food ; 4(10): 854-865, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37845546

RESUMO

Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.


Assuntos
Poluição do Ar , Ecossistema , Mudança Climática , Produtos Agrícolas/genética , Produção Agrícola
7.
Sci Rep ; 13(1): 12462, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528122

RESUMO

Extreme climate events can have a significant negative impact on maize productivity, resulting in food scarcity and socioeconomic losses. Thus, quantifying their effect is needed for developing future adaptation and mitigation strategies, especially for countries relying on maize as a staple crop, such as South Africa. While several studies have analyzed the impact of climate extremes on maize yields in South Africa, little is known on the quantitative contribution of combined extreme events to maize yield variability and the causality link of extreme events. This study uses existing stress indices to investigate temporal and spatial patterns of heatwaves, drought, and extreme precipitation during maize growing season between 1986/87 and 2015/16 for South Africa provinces and at national level and quantifies their contribution to yield variability. A causal discovery algorithm was applied to investigate the causal relationship among extreme events. At the province and national levels, heatwaves and extreme precipitation showed no significant trend. However, drought severity increased in several provinces. The modified Combined Stress Index (CSIm) model showed that the maize yield nationwide was associated with drought events (explaining 25% of maize yield variability). Heatwaves has significant influence on maize yield variability (35%) in Free State. In North West province, the maize yield variability (46%) was sensitive to the combination of drought and extreme precipitation. The causal analysis suggests that the occurrence of heatwaves intensified drought, while a causal link between heatwaves and extreme precipitation was not detected. The presented findings provide a deeper insight into the sensitivity of yield data to climate extremes and serve as a basis for future studies on maize yield anomalies.


Assuntos
Mudança Climática , Zea mays , África do Sul , Clima , Secas , Produtos Agrícolas
8.
Glob Chang Biol ; 29(11): 3130-3146, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951185

RESUMO

France suffered, in 2016, the most extreme wheat yield decline in recent history, with some districts losing 55% yield. To attribute causes, we combined the largest coherent detailed wheat field experimental dataset with statistical and crop model techniques, climate information, and yield physiology. The 2016 yield was composed of up to 40% fewer grains that were up to 30% lighter than expected across eight research stations in France. The flowering stage was affected by prolonged cloud cover and heavy rainfall when 31% of the loss in grain yield was incurred from reduced solar radiation and 19% from floret damage. Grain filling was also affected as 26% of grain yield loss was caused by soil anoxia, 11% by fungal foliar diseases, and 10% by ear blight. Compounding climate effects caused the extreme yield decline. The likelihood of these compound factors recurring under future climate change is estimated to change with a higher frequency of extremely low wheat yields.


Assuntos
Grão Comestível , Triticum , Triticum/fisiologia , França , Solo
9.
Front Plant Sci ; 13: 865188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668793

RESUMO

Accurate prediction of root growth and related resource uptake is crucial to accurately simulate crop growth especially under unfavorable environmental conditions. We coupled a 1D field-scale crop-soil model running in the SIMPLACE modeling framework with the 3D architectural root model CRootbox on a daily time step and implemented a stress function to simulate root elongation as a function of soil bulk density and matric potential. The model was tested with field data collected during two growing seasons of spring barley and winter wheat on Haplic Luvisol. In that experiment, mechanical strip-wise subsoil loosening (30-60 cm) (DL treatment) was tested, and effects on root and shoot growth at the melioration strip as well as in a control treatment were evaluated. At most soil depths, strip-wise deep loosening significantly enhanced observed root length densities (RLDs) of both crops as compared to the control. However, the enhanced root growth had a beneficial effect on crop productivity only in the very dry season in 2018 for spring barley where the observed grain yield at the strip was 18% higher as compared to the control. To understand the underlying processes that led to these yield effects, we simulated spring barley and winter wheat root and shoot growth using the described field data and the model. For comparison, we simulated the scenarios with the simpler 1D conceptual root model. The coupled model showed the ability to simulate the main effects of strip-wise subsoil loosening on root and shoot growth. It was able to simulate the adaptive plasticity of roots to local soil conditions (more and thinner roots in case of dry and loose soil). Additional scenario runs with varying weather conditions were simulated to evaluate the impact of deep loosening on yield under different conditions. The scenarios revealed that higher spring barley yields in DL than in the control occurred in about 50% of the growing seasons. This effect was more pronounced for spring barley than for winter wheat. Different virtual root phenotypes were tested to assess the potential of the coupled model to simulate the effect of varying root traits under different conditions.

10.
J Exp Bot ; 73(16): 5715-5729, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35728801

RESUMO

Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.


Assuntos
Mudança Climática , Triticum , Biomassa , Estações do Ano , Temperatura
11.
Environ Pollut ; 304: 119251, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390418

RESUMO

Tropospheric ozone threatens crop production in many parts of the world, especially in highly populated countries in economic transition. Crop models suggest substantial global yield losses for wheat, but typically such models fail to address differences in ozone responses between tolerant and sensitive genotypes. Therefore, the purpose of this study was to identify physiological traits contributing to yield losses or yield stability under ozone stress in 18 contrasting wheat cultivars that had been pre-selected from a larger wheat population with known ozone tolerance. Plants were exposed to season-long ozone fumigation in open-top chambers at an average ozone concentration of 70 ppb with three additional acute ozone episodes of around 150 ppb. Compared to control conditions, average yield loss was 18.7 percent, but large genotypic variation was observed ranging from 2.7 to 44.6 percent. Foliar chlorophyll content represented by normalized difference vegetation index and net CO2 assimilation rate of young leaves during grain filling were the physiological traits most strongly correlated with grain yield losses or stability. Accumulative effects of chronic ozone exposure on photosynthesis were more detrimental for grain yield than instantaneous effects of acute ozone shocks, or accelerated senescence of older leaves represented by changes in the ratio of brown leaf area/green leaf area index. We used experimental data of two selected tolerant or sensitive varieties, respectively, to parametrize the LINTULCC2 crop model expanded with an ozone response routine. By specifying parameters representing the distinct physiological responses of contrasting genotypes, we simulated yield losses of 7 percent (tolerant) or 33 percent (sensitive). By considering genotypic differences in ozone response models, this study helps to improve the accuracy of simulation studies, estimate the effects of adaptive breeding, and identify physiological traits for the breeding of ozone tolerant wheat varieties that could deliver stable yields despite ozone exposure.


Assuntos
Ozônio , Grão Comestível , Ozônio/toxicidade , Fotossíntese , Melhoramento Vegetal , Folhas de Planta , Estações do Ano , Triticum
12.
Sci Rep ; 12(1): 4049, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260727

RESUMO

This study investigates the main drivers of uncertainties in simulated irrigated maize yield under historical conditions as well as scenarios of increased temperatures and altered irrigation water availability. Using APSIM, MONICA, and SIMPLACE crop models, we quantified the relative contributions of three irrigation water allocation strategies, three sowing dates, and three maize cultivars to the uncertainty in simulated yields. The water allocation strategies were derived from historical records of farmer's allocation patterns in drip-irrigation scheme of the Genil-Cabra region, Spain (2014-2017). By considering combinations of allocation strategies, the adjusted R2 values (showing the degree of agreement between simulated and observed yields) increased by 29% compared to unrealistic assumptions of considering only near optimal or deficit irrigation scheduling. The factor decomposition analysis based on historic climate showed that irrigation strategies was the main driver of uncertainty in simulated yields (66%). However, under temperature increase scenarios, the contribution of crop model and cultivar choice to uncertainty in simulated yields were as important as irrigation strategy. This was partially due to different model structure in processes related to the temperature responses. Our study calls for including information on irrigation strategies conducted by farmers to reduce the uncertainty in simulated yields at field scale.


Assuntos
Mudança Climática , Zea mays , Agricultura , Espanha , Incerteza , Água , Zea mays/fisiologia
13.
Sci Rep ; 12(1): 3215, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217689

RESUMO

Crop yield forecasting depends on many interactive factors, including crop genotype, weather, soil, and management practices. This study analyzes the performance of machine learning and deep learning methods for winter wheat yield prediction using an extensive dataset of weather, soil, and crop phenology variables in 271 counties across Germany from 1999 to 2019. We proposed a Convolutional Neural Network (CNN) model, which uses a 1-dimensional convolution operation to capture the time dependencies of environmental variables. We used eight supervised machine learning models as baselines and evaluated their predictive performance using RMSE, MAE, and correlation coefficient metrics to benchmark the yield prediction results. Our findings suggested that nonlinear models such as the proposed CNN, Deep Neural Network (DNN), and XGBoost were more effective in understanding the relationship between the crop yield and input data compared to the linear models. Our proposed CNN model outperformed all other baseline models used for winter wheat yield prediction (7 to 14% lower RMSE, 3 to 15% lower MAE, and 4 to 50% higher correlation coefficient than the best performing baseline across test data). We aggregated soil moisture and meteorological features at the weekly resolution to address the seasonality of the data. We also moved beyond prediction and interpreted the outputs of our proposed CNN model using SHAP and force plots which provided key insights in explaining the yield prediction results (importance of variables by time). We found DUL, wind speed at week ten, and radiation amount at week seven as the most critical features in winter wheat yield prediction.


Assuntos
Redes Neurais de Computação , Triticum , Aprendizado de Máquina , Estações do Ano , Solo
14.
Nat Food ; 3(7): 532-541, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-37117937

RESUMO

Global food security requires food production to be increased in the coming decades. The closure of any existing genetic yield gap (Yig) by genetic improvement could increase crop yield potential and global production. Here we estimated present global wheat Yig, covering all wheat-growing environments and major producers, by optimizing local wheat cultivars using the wheat model Sirius. The estimated mean global Yig was 51%, implying that global wheat production could benefit greatly from exploiting the untapped global Yig through the use of optimal cultivar designs, utilization of the vast variation available in wheat genetic resources, application of modern advanced breeding tools, and continuous improvements of crop and soil management.

15.
Front Plant Sci ; 13: 1067498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684760

RESUMO

Plant root traits play a crucial role in resource acquisition and crop performance when soil nutrient availability is low. However, the respective trait responses are complex, particularly at the field scale, and poorly understood due to difficulties in root phenotyping monitoring, inaccurate sampling, and environmental conditions. Here, we conducted a systematic review and meta-analysis of 50 field studies to identify the effects of nitrogen (N), phosphorous (P), or potassium (K) deficiencies on the root systems of common crops. Root length and biomass were generally reduced, while root length per shoot biomass was enhanced under N and P deficiency. Root length decreased by 9% under N deficiency and by 14% under P deficiency, while root biomass was reduced by 7% in N-deficient and by 25% in P-deficient soils. Root length per shoot biomass increased by 33% in N deficient and 51% in P deficient soils. The root-to-shoot ratio was often enhanced (44%) under N-poor conditions, but no consistent response of the root-to-shoot ratio to P-deficiency was found. Only a few K-deficiency studies suited our approach and, in those cases, no differences in morphological traits were reported. We encountered the following drawbacks when performing this analysis: limited number of root traits investigated at field scale, differences in the timing and severity of nutrient deficiencies, missing data (e.g., soil nutrient status and time of stress), and the impact of other conditions in the field. Nevertheless, our analysis indicates that, in general, nutrient deficiencies increased the root-length-to-shoot-biomass ratios of crops, with impacts decreasing in the order deficient P > deficient N > deficient K. Our review resolved inconsistencies that were often found in the individual field experiments, and led to a better understanding of the physiological mechanisms underlying root plasticity in fields with low nutrient availability.

16.
Sci Total Environ ; 771: 144770, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736187

RESUMO

Winter cover crops are sown in between main spring crops (e.g. cash and forage crops) to provide a range of benefits, including the reduction of nitrogen (N) leaching losses to groundwater. However, the extent by which winter cover crops will remain effective under future climate change is unclear. We assess variability and uncertainty of climate change effects on the reduction of N leaching by winter oat cover crops. Field data were collected to quantify ranges of cover crop above-ground biomass (7 to 10 t DM/ha) and N uptake (70 to 180 kg N/ha) under contrasting initial soil conditions. The data were also used to evaluate the APSIM-NextGen model (R2 from 62 to 96% and RMSEr from 7 to 50%), which was then applied to simulate cover crop and fallow conditions across four key agricultural locations in New Zealand, under baseline and future climate scenarios. Cover crops reduced N leaching risks for all location/scenario combinations but with large variability in space and time (e.g. 21 to 47% of fallow) depending on the climate change scenario. For instance, end-of-century estimates for northern (warmer) locations mostly showed non-significant effects of climate change on cover crop effectiveness and N leaching. In contrast for southern (colder) locations, there was a systematic increase in N leaching risks with climate change intensity despite a concomitant, but less than proportional, increase in cover crop effectiveness (up to ~5% of baseline) due to higher winter yields and N uptake. This implies that climate change may not only modify the geography of N leaching hotspots, but also the extent by which cover crops can locally reduce pollution risks, in some cases requiring complementary adaptive measures. The patchy- and threshold-nature of leaching events indicates that fine spatio-temporal resolutions are better suited to evaluate cover crop effectiveness under climate change.


Assuntos
Mudança Climática , Produtos Agrícolas , Agricultura , Nova Zelândia , Nitrogênio , Solo
18.
Glob Chang Biol ; 26(7): 4079-4093, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32320514

RESUMO

Early vigour in wheat is a trait that has received attention for its benefits reducing evaporation from the soil surface early in the season. However, with the growth enhancement common to crops grown under elevated atmospheric CO2 concentrations (e[CO2 ]), there is a risk that too much early growth might deplete soil water and lead to more severe terminal drought stress in environments where production relies on stored soil water content. If this is the case, the incorporation of such a trait in wheat breeding programmes might have unintended negative consequences in the future, especially in dry years. We used selected data from cultivars with proven expression of high and low early vigour from the Australian Grains Free Air CO2 Enrichment (AGFACE) facility, and complemented this analysis with simulation results from two crop growth models which differ in the modelling of leaf area development and crop water use. Grain yield responses to e[CO2 ] were lower in the high early vigour group compared to the low early vigour group, and although these differences were not significant, they were corroborated by simulation model results. However, the simulated lower response with high early vigour lines was not caused by an earlier or greater depletion of soil water under e[CO2 ] and the mechanisms responsible appear to be related to an earlier saturation of the radiation intercepted. Whether this is the case in the field needs to be further investigated. In addition, there was some evidence that the timing of the drought stress during crop growth influenced the effect of e[CO2 ] regardless of the early vigour trait. There is a need for FACE investigations of the value of traits for drought adaptation to be conducted under more severe drought conditions and variable timing of drought stress, a risky but necessary endeavour.


Assuntos
Secas , Triticum , Austrália , Dióxido de Carbono/análise , Grão Comestível/química
19.
Nat Plants ; 6(4): 338-348, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296143

RESUMO

Predicting the consequences of manipulating genotype (G) and agronomic management (M) on agricultural ecosystem performances under future environmental (E) conditions remains a challenge. Crop modelling has the potential to enable society to assess the efficacy of G × M technologies to mitigate and adapt crop production systems to climate change. Despite recent achievements, dedicated research to develop and improve modelling capabilities from gene to global scales is needed to provide guidance on designing G × M adaptation strategies with full consideration of their impacts on both crop productivity and ecosystem sustainability under varying climatic conditions. Opportunities to advance the multiscale crop modelling framework include representing crop genetic traits, interfacing crop models with large-scale models, improving the representation of physiological responses to climate change and management practices, closing data gaps and harnessing multisource data to improve model predictability and enable identification of emergent relationships. A fundamental challenge in multiscale prediction is the balance between process details required to assess the intervention and predictability of the system at the scales feasible to measure the impact. An advanced multiscale crop modelling framework will enable a gene-to-farm design of resilient and sustainable crop production systems under a changing climate at regional-to-global scales.


Assuntos
Aclimatação , Mudança Climática , Produtos Agrícolas , Modelos Biológicos
20.
Glob Change Biol Bioenergy ; 12(1): 71-89, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32025242

RESUMO

Crop residue exploitation for bioenergy can play an important role in climate change mitigation without jeopardizing food security, but it may be constrained by impacts on soil organic carbon (SOC) stocks, and market, logistic and conversion challenges. We explore opportunities to increase bioenergy potentials from residues while reducing environmental impacts, in line with sustainable intensification. Using the case study of North Rhine-Westphalia in Germany, we employ a spatiotemporally explicit approach combined with stakeholder interviews. First, the interviews identify agronomic and environmental impacts due to the potential reduction in SOC as the most critical challenge associated with enhanced crop residue exploitation. Market and technological challenges and competition with other residue uses are also identified as significant barriers. Second, with the use of agroecosystem modelling and estimations of bioenergy potentials and greenhouse gas emissions till mid-century, we evaluate the ability of agricultural management to tackle the identified agronomic and environmental challenges. Integrated site-specific management based on (a) humus balancing, (b) optimized fertilization and (c) winter soil cover performs better than our reference scenario with respect to all investigated variables. At the regional level, we estimate (a) a 5% increase in technical residue potentials and displaced emissions from substituting fossil fuels by bioethanol, (b) an 8% decrease in SOC losses and associated emissions, (c) an 18% decrease in nitrous oxide emissions, (d) a 37% decrease in mineral fertilizer requirements and emissions from their production and (e) a 16% decrease in nitrate leaching. Results are spatially variable and, despite improvements induced by management, limited amounts of crop residues are exploitable for bioenergy in areas prone to SOC decline. In order to sustainably intensify crop residue exploitation for bioenergy and reconcile climate change mitigation with other sustainability objectives, such as those on soil and water quality, residue management needs to be designed in an integrated and site-specific manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA