Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1011980, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662774

RESUMO

Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor "domesticated endogenous viruses" (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly for Hyposoter didymator that harbors H. didymator ichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene, U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown of U16 by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicated U16 knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis.


Assuntos
Replicação Viral , Vespas , Animais , Vespas/virologia , Vespas/genética , Replicação Viral/genética , Genoma Viral , Feminino , Genes Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Polydnaviridae/genética , Vírion/genética
2.
J Insect Physiol ; 139: 104399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35568240

RESUMO

Upon infection, the phenoloxidase system in arthropods is rapidly mobilized and constitutes a major defense system against invaders. The activation of the key enzymes prophenoloxidase (PPO) and their action in immunity through melanization and encapsulation of foreign bodies in hemolymph has been described in many insects. On the other hand, little is known about PPOs involvement in other essential functions related to insect development. In this paper, we investigated the function of the two PPOs of the crop pest, Spodoptera frugiperda (PPO1 and PPO2). We show that PPOs are mainly expressed in hemocytes with the PPO2 expressed at higher levels than the PPO1. In addition, these two genes are expressed in the same tissue and at the same stages of insect development. Through the generation of loss-of-function mutants by CRISPR/Cas9 method, we show that the presence of PPOs is essential for the normal development of the pupa and the survival of the insect.


Assuntos
Precursores Enzimáticos , Monofenol Mono-Oxigenase , Animais , Catecol Oxidase , Precursores Enzimáticos/genética , Larva , Monofenol Mono-Oxigenase/genética , Mutagênese , Spodoptera/genética
3.
PLoS Pathog ; 15(12): e1008210, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31834912

RESUMO

There are many documented examples of viral genes retained in the genomes of multicellular organisms that may in some cases bring new beneficial functions to the receivers. The ability of certain ichneumonid parasitic wasps to produce virus-derived particles, the so-called ichnoviruses (IVs), not only results from the capture and domestication of single viral genes but of almost entire ancestral virus genome(s). Indeed, following integration into wasp chromosomal DNA, the putative and still undetermined IV ancestor(s) evolved into encoding a 'virulence gene delivery vehicle' that is now required for successful infestation of wasp hosts. Several putative viral genes, which are clustered in distinct regions of wasp genomes referred to as IVSPERs (Ichnovirus Structural Protein Encoding Regions), have been assumed to be involved in virus-derived particles morphogenesis, but this question has not been previously functionally addressed. In the present study, we have successfully combined RNA interference and transmission electron microscopy to specifically identify IVSPER genes that are responsible for the morphogenesis and trafficking of the virus-derived particles in ovarian cells of the ichneumonid wasp Hyposoter didymator. We suggest that ancestral viral genes retained within the genomes of certain ichneumonid parasitoids possess conserved functions which were domesticated for the purpose of assembling viral vectors for the delivery of virulence genes to parasitized host animals.


Assuntos
Vírion/fisiologia , Vespas/genética , Vespas/virologia , Animais , Genes Virais/genética , Polydnaviridae/genética , Interferência de RNA
4.
Mol Immunol ; 108: 89-101, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30784767

RESUMO

Polydnaviruses (PDVs) are obligatory symbionts found in thousands of endoparasitoid species and essential for successful parasitism. The two genera of PDVs, ichnovirus (IV) and bracovirus (BV), use different sets of virulence factors to ensure successful parasitization of the host. Previous studies have shown that PDVs target apoptosis, one of the innate antiviral responses in many host organisms. However, IV and BV have been shown to have opposite effects on this process. BV induces apoptosis in host cells, whereas some IV proteins have been shown to have anti-apoptotic activity. The different biological contexts in which the assays were performed may account for this difference. In this study, we evaluated the interplay between apoptosis and the ichnovirus HdIV from the parasitoid Hyposoter didymator, in the HdIV-infected hemocytes and fat bodies of S. frugiperda larvae, and in the Sf9 insect cell line challenged with HdIV. We found that HdIV induced cell death in hemocytes and fat bodies, whereas anti-apoptotic activity was observed in HdIV-infected Sf9 cells, with and without stimulation with viral PAMPs or chemical inducers. We also used an RT-qPCR approach to determine the expression profiles of a set of genes known to encode key components of the other main antiviral immune pathways described in insects. The analysis of immune gene transcription highlighted differences in antiviral responses to HdIV as a function of host cell type. However, all these antiviral pathways appeared to be neutralized by low levels of expression for the genes encoding the key components of these pathways, in all biological contexts. Finally, we investigated the effect of HdIV on the general antiviral defenses of the lepidopteran larvae in more detail, by studying the survival of S. frugiperda co-infected with HdIV and the entomopathogenic densovirus JcDV. Coinfected S. frugiperda larvae have increased resistance to JcDV at an early phase of infection, whereas HdIV effects enhance the virulence of the virus at later stages of infection. Overall, these results reveal complex interactions between HdIV and its cellular environment.


Assuntos
Imunidade , Polydnaviridae/fisiologia , Spodoptera/imunologia , Spodoptera/virologia , Animais , Apoptose , Sobrevivência Celular , Corpo Adiposo/citologia , Corpo Adiposo/virologia , Hemócitos/citologia , Hemócitos/virologia , Imunidade/genética , Larva/citologia , Larva/virologia , RNA de Cadeia Dupla/metabolismo , Células Sf9 , Ativação Transcricional/genética
5.
Plant Sci ; 180(5): 694-701, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21421420

RESUMO

The bacterial pathogen Erwinia amylovora causes the devastating disease known as fire blight in some rosaceous plants including apple and pear. One of the pathogenicity factors affecting fire blight development is the production of a siderophore, desferrioxamine, which overcomes the limiting conditions in plant tissues and also protects bacteria against active oxygen species. In this paper we examine the effect of an iron chelator protein encoded by the pea ferritin gene on the fire blight susceptibility of pear (Pyrus communis). Transgenic pear clones expressing this gene controlled either by the constitutive promoter CaMV 35S or by the inducible promoter sgd24 promoter were produced. The transgenic clones produced were analysed by Q-RT-PCR to determine the level of expression of the pea transgene. A pathogen-inducible pattern of expression of the pea transgene was observed in sgd24-promoter transformants. Adaptation to iron deficiency in vitro was tested in some transgenic clones and different iron metabolism parameters were measured. No strong effect on iron and chlorophyll content, root reductase activity and fire blight susceptibility was detected in the transgenic lines tested. No transformants showed a significant reduction in susceptibility to fire blight in greenhouse conditions when inoculated with E. amylovora.


Assuntos
Ferritinas/metabolismo , Ferro/metabolismo , Pisum sativum/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Desferroxamina/metabolismo , Erwinia amylovora/patogenicidade , Ferritinas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Pyrus/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sideróforos/metabolismo
6.
New Phytol ; 178(4): 781-797, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18384509

RESUMO

* Coffea arabica (Arabica) and Coffea canephora (Robusta) are the two main cultivated species used for coffee bean production. Arabica genotypes generally produce a higher coffee quality than Robusta genotypes. Understanding the genetic basis for sucrose accumulation during coffee grain maturation is an important goal because sucrose is an important coffee flavor precursor. * Nine new Coffea genes encoding sucrose metabolism enzymes have been identified: sucrose phosphate synthase (CcSPS1, CcSPS2), sucrose phosphate phosphatase (CcSP1), cytoplasmic (CaInv3) and cell wall (CcInv4) invertases and four invertase inhibitors (CcInvI1, 2, 3, 4). * Activities and mRNA abundance of the sucrose metabolism enzymes were compared at different developmental stages in Arabica and Robusta grains, characterized by different sucrose contents in mature grain. * It is concluded that Robusta accumulates less sucrose than Arabica for two reasons: Robusta has higher sucrose synthase and acid invertase activities early in grain development - the expression of CcSS1 and CcInv2 appears to be crucial at this stage and Robusta has a lower SPS activity and low CcSPS1 expression at the final stages of grain development and hence has less capacity for sucrose re-synthesis. Regulation of vacuolar invertase CcInv2 activity by invertase inhibitors CcInvI2 and/or CcInvI3 during Arabica grain development is considered.


Assuntos
Coffea/enzimologia , Coffea/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Sacarose/metabolismo , DNA Complementar/genética , Frutose/metabolismo , Genes de Plantas , Glucose/metabolismo , Folhas de Planta/genética , Reação em Cadeia da Polimerase , Vacúolos/enzimologia , beta-Frutofuranosidase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA