Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
EMBO Mol Med ; 14(11): e15941, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36194668

RESUMO

Inherited retinal diseases (IRDs) are a group of diseases whose common landmark is progressive photoreceptor loss. The development of gene-specific therapies for IRDs is hampered by their wide genetic heterogeneity. Mitochondrial dysfunction is proving to constitute one of the key pathogenic events in IRDs; hence, approaches that enhance mitochondrial activities have a promising therapeutic potential for these conditions. We previously reported that miR-181a/b downregulation boosts mitochondrial turnover in models of primary retinal mitochondrial diseases. Here, we show that miR-181a/b silencing has a beneficial effect also in IRDs. In particular, the injection in the subretinal space of an adeno-associated viral vector (AAV) that harbors a miR-181a/b inhibitor (sponge) sequence (AAV2/8-GFP-Sponge-miR-181a/b) improves retinal morphology and visual function both in models of autosomal dominant (RHO-P347S) and of autosomal recessive (rd10) retinitis pigmentosa. Moreover, we demonstrate that miR-181a/b downregulation modulates the level of the mitochondrial fission-related protein Drp1 and rescues the mitochondrial fragmentation in RHO-P347S photoreceptors. Overall, these data support the potential use of miR-181a/b downregulation as an innovative mutation-independent therapeutic strategy for IRDs, which can be effective both to delay disease progression and to aid gene-specific therapeutic approaches.


Assuntos
MicroRNAs , Retinose Pigmentar , Humanos , Regulação para Baixo , Retina/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Mutação , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638705

RESUMO

A cell should deal with the changing external environment or the neighboring cells. Inevitably, the cell surface receives and transduces a number of signals to produce apt responses. Typically, cell surface receptors are activated, and during this process, the subplasmalemmal actin cytoskeleton is often rearranged. An intriguing point is that some signaling enzymes and ion channels are physically associated with the actin cytoskeleton, raising the possibility that the subtle changes of the local actin cytoskeleton can, in turn, modulate the activities of these proteins. In this study, we reviewed the early and new experimental evidence supporting the notion of actin-regulated enzyme and ion channel activities in various cell types including the cells of immune response, neurons, oocytes, hepatocytes, and epithelial cells, with a special emphasis on the Ca2+ signaling pathway that depends on the synthesis of inositol 1,4,5-trisphosphate. Some of the features that are commonly found in diverse cells from a wide spectrum of the animal species suggest that fine-tuning of the activities of the enzymes and ion channels by the actin cytoskeleton may be an important strategy to inhibit or enhance the function of these signaling proteins.


Assuntos
Citoesqueleto de Actina/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Canais Iônicos/metabolismo , Animais , Humanos
4.
Mol Ther ; 28(4): 1167-1176, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32087148

RESUMO

Lysosomal storage diseases (LSDs) are inherited disorders caused by lysosomal deficiencies and characterized by dysfunction of the autophagy-lysosomal pathway (ALP) often associated with neurodegeneration. No cure is currently available to treat neuropathology in LSDs. By studying a mouse model of mucopolysaccharidosis (MPS) type IIIA, one of the most common and severe forms of LSDs, we found that multiple amyloid proteins including α-synuclein, prion protein (PrP), Tau, and amyloid ß progressively aggregate in the brain. The amyloid deposits mostly build up in neuronal cell bodies concomitantly with neurodegeneration. Treating MPS-IIIA mice with CLR01, a "molecular tweezer" that acts as a broad-spectrum inhibitor of amyloid protein self-assembly reduced lysosomal enlargement and re-activates autophagy flux. Restoration of the ALP was associated with reduced neuroinflammation and amelioration of memory deficits. Together, these data provide evidence that brain deposition of amyloid proteins plays a gain of neurotoxic function in a severe LSD by affecting the ALP and identify CLR01 as new potent drug candidate for MPS-IIIA and likely for other LSDs.


Assuntos
Autofagia/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Mucopolissacaridose III/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Organofosfatos/administração & dosagem , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Corpo Celular/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Mucopolissacaridose III/complicações , Mucopolissacaridose III/metabolismo , Doenças Neurodegenerativas/etiologia , Organofosfatos/farmacologia , Resultado do Tratamento
5.
EMBO Mol Med ; 11(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30979712

RESUMO

Mitochondrial diseases (MDs) are a heterogeneous group of devastating and often fatal disorders due to defective oxidative phosphorylation. Despite the recent advances in mitochondrial medicine, effective therapies are still not available for these conditions. Here, we demonstrate that the microRNAs miR-181a and miR-181b (miR-181a/b) regulate key genes involved in mitochondrial biogenesis and function and that downregulation of these miRNAs enhances mitochondrial turnover in the retina through the coordinated activation of mitochondrial biogenesis and mitophagy. We thus tested the effect of miR-181a/b inactivation in different animal models of MDs, such as microphthalmia with linear skin lesions and Leber's hereditary optic neuropathy. We found that miR-181a/b downregulation strongly protects retinal neurons from cell death and significantly ameliorates the disease phenotype in all tested models. Altogether, our results demonstrate that miR-181a/b regulate mitochondrial homeostasis and that these miRNAs may be effective gene-independent therapeutic targets for MDs characterized by neuronal degeneration.


Assuntos
Regulação para Baixo/genética , MicroRNAs/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Animais , Autofagia/genética , Morte Celular , Linhagem Celular , Citoproteção , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Camundongos , MicroRNAs/genética , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/patologia , Dinâmica Mitocondrial/genética , Modelos Biológicos , Biogênese de Organelas , Oryzias , Fenótipo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
6.
J Cell Sci ; 130(24): 4155-4167, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093023

RESUMO

Many secretory cells increase the synthesis and secretion of cargo proteins in response to specific stimuli. How cells couple increased cargo load with a coordinate rise in secretory capacity to ensure efficient transport is not well understood. We used thyroid cells stimulated with thyrotropin (TSH) to demonstrate a coordinate increase in the production of thyroid-specific cargo proteins and ER-Golgi transport factors, and a parallel expansion of the Golgi complex. TSH also increased expression of the CREB3L1 transcription factor, which alone caused amplified transport factor levels and Golgi enlargement. Furthermore, CREB3L1 potentiated the TSH-induced increase in Golgi volume. A dominant-negative CREB3L1 construct hampered the ability of TSH to induce Golgi expansion, implying that this transcription factor contributes to Golgi expansion. Our findings support a model in which CREB3L1 acts as a downstream effector of TSH to regulate the expression of cargo proteins, and simultaneously increases the synthesis of transport factors and the expansion of the Golgi to synchronize the rise in cargo load with the amplified capacity of the secretory pathway.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Complexo de Golgi/genética , Proteínas do Tecido Nervoso/genética , Glândula Tireoide/metabolismo , Tireotropina/genética , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/genética , Complexo de Golgi/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Via Secretória/genética , Tireotropina/metabolismo
7.
EMBO Mol Med ; 9(1): 112-132, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881461

RESUMO

Lysosomal storage disorders (LSDs) are inherited diseases characterized by lysosomal dysfunction and often showing a neurodegenerative course. There is no cure to treat the central nervous system in LSDs. Moreover, the mechanisms driving neuronal degeneration in these pathological conditions remain largely unknown. By studying mouse models of LSDs, we found that neurodegeneration develops progressively with profound alterations in presynaptic structure and function. In these models, impaired lysosomal activity causes massive perikaryal accumulation of insoluble α-synuclein and increased proteasomal degradation of cysteine string protein α (CSPα). As a result, the availability of both α-synuclein and CSPα at nerve terminals strongly decreases, thus inhibiting soluble NSF attachment receptor (SNARE) complex assembly and synaptic vesicle recycling. Aberrant presynaptic SNARE phenotype is recapitulated in mice with genetic ablation of one allele of both CSPα and α-synuclein. The overexpression of CSPα in the brain of a mouse model of mucopolysaccharidosis type IIIA, a severe form of LSD, efficiently re-established SNARE complex assembly, thereby ameliorating presynaptic function, attenuating neurodegenerative signs, and prolonging survival. Our data show that neurodegenerative processes associated with lysosomal dysfunction may be presynaptically initiated by a concomitant reduction in α-synuclein and CSPα levels at nerve terminals. They also demonstrate that neurodegeneration in LSDs can be slowed down by re-establishing presynaptic functions, thus identifying synapse maintenance as a novel potentially druggable target for brain treatment in LSDs.


Assuntos
Proteínas de Choque Térmico HSP40/análise , Doenças por Armazenamento dos Lisossomos/patologia , Proteínas de Membrana/análise , Doenças Neurodegenerativas/patologia , Terminações Pré-Sinápticas/patologia , alfa-Sinucleína/análise , Animais , Modelos Animais de Doenças , Camundongos , Proteólise , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA