Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 188: 114408, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823853

RESUMO

Biopreservation strategies such as the use of Mediterranean plant extracts to ensure food safety are promising to deal with the emergence of antimicrobial resistances and the overreliance on food chemical additives. In the last few decades, antimicrobial susceptibility testing (AST) for evaluating the in vitro antibacterial potential of plant extracts against the most relevant foodborne pathogens has been widely reported in the literature. The current meta-analysis aimed to summarise and analyse the extensive evidence available in the literature regarding the in vitro antimicrobial capability of Allium, Ocimum and Thymus spp. extracts against foodborne pathogens. A systematic review was carried out to gather data on AST results of these extracts against Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli and Bacillus cereus, including inhibition diameters (ID) and minimum inhibitory concentrations (MIC). A total of 742 records were gathered from a raw collection of 2,065 articles. Weighted mixed-effect linear models were adjusted to data to obtain pooled ID, pooled MIC and the relationship between both model estimations and observations. The pooled results revealed B. cereus as the most susceptible bacteria to Allium sativum (pooled ID = 20.64 ± 0.61 mm) by diffusion methods and S. aureus (pooled MIC = 0.146 mg/mL) by dilution methods. Diffusion methods did not yield conclusive results for Ocimum spp. extracts; however, the lowest pooled MIC was obtained for S. aureus (0.263 mg/mL). Among the foodborne pathogens evaluated, B. cereus showed the highest sensitivity to Thymus spp. extracts by both diffusion and dilution methods (pooled ID = 28.90 ± 2.34 mm and MIC = 0.075 mg/mL). The methodology used for plant extraction was found to not significantly affect MIC values (p > 0.05). Overall, the antimicrobial effectiveness of the studied extracts against Gram-positive and Gram-negative bacteria was demonstrated. Finally, the robustness of the meta-regression model was confirmed, also revealing an inversely proportional correlation between the ID and MIC measurements (p < 0.0001). These results provide a robust scientific basis on the factors affecting the in vitro antimicrobial efficacy of extracts from Mediterranean plants. They also provide valuable information for stakeholders involved in their industrial application in food, including producers, regulatory agencies and consumers which demand green-labelled foods.


Assuntos
Allium , Antibacterianos , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Ocimum , Extratos Vegetais , Thymus (Planta) , Thymus (Planta)/química , Extratos Vegetais/farmacologia , Ocimum/química , Allium/química , Antibacterianos/farmacologia , Inocuidade dos Alimentos , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento
2.
Food Sci Biotechnol ; 33(5): 1195-1205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440680

RESUMO

This study focused on optimizing the fermentation-based production of Exopolysaccharides (EPS) from Enterococcus faecium F58 initially isolated from traditional Moroccan Jben, a fresh goat cheese. Using the central composite design, yeast extract, MnSO4, and time affect EPS concentration. The highest experimental and predicted EPS production yields were 2.46 g/L ± 0.38 and 2.86 g/L, respectively. Optimal concentrations of yeast extract (4.46 g/L) and MnSO4 (0.011 g/L) were identified after 26 h at 30 °C. Characterization of EPS was conducted using SEM with EDX, XRD, and FTIR analyses. These tests revealed a specific morphology and an amorphous structure. Additionally, thermogravimetric analysis indicated adequate EPS stability up to 200 °C with anti-adhesion properties against different pathogens. This study offers valuable insights into the optimized production of EPS from Enterococcus faecium F58, which exhibits significant structural and functional properties for various applications in the food and biotechnology industries. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01424-9.

3.
Braz J Microbiol ; 55(2): 1131-1138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319530

RESUMO

Pathogenic bacterial biofilms present significant challenges, particularly in food safety and material deterioration. Therefore, using Enterococcus mundtii A2, known for its antagonistic activity against pathogen adhesion, could serve as a novel strategy to reduce pathogenic colonization within the food sector. This study aimed to investigate the biofilm-forming ability of E. mundtii A2, isolated from camel milk, on two widely used stainless steels within the agri-food domain and to assess its anti-adhesive properties against various pathogens, especially on stainless steel 316L. Additionally, investigations into auto-aggregation and co-aggregation were also conducted. Plate count methodologies revealed increased biofilm formation by E. mundtii A2 on 316L, followed by 304L. Scanning electron microscopy (SEM) analysis revealed a dense yet thin biofilm layer, playing a critical role in reducing the adhesion of L. monocytogenes CECT 4032 and Staphylococcus aureus CECT 976, with a significant reduction of ≈ 2 Log CFU/cm2. However, Gram-negative strains, P. aeruginosa ATCC 27853 and E. coli ATCC 25922, exhibit modest adhesion reduction (~ 0.7 Log CFU/cm2). The findings demonstrate the potential of applying E. mundtii A2 biofilms as an effective strategy to reduce the adhesion and propagation of potentially pathogenic bacterial species on stainless steel 316L.


Assuntos
Aderência Bacteriana , Biofilmes , Enterococcus , Aço Inoxidável , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Aderência Bacteriana/efeitos dos fármacos , Enterococcus/fisiologia , Enterococcus/efeitos dos fármacos , Animais , Microbiologia de Alimentos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Antibiose , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/fisiologia , Listeria monocytogenes/crescimento & desenvolvimento , Leite/microbiologia
4.
Braz J Microbiol ; 54(3): 2117-2127, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531004

RESUMO

The microbiota of aquatic animals is heavily influenced by their environment, offering a potential source for biotechnologically relevant microorganisms. In this investigation, bacterial strains from fish and fish products were investigated to determine their antimicrobial effects against fish and food pathogens. Twelve strains, including five Lactococcus, two Enterococcus hirae, two Enterococcus mundtii, and three Latilactobacillus sakei were selected as producing bacteriocin-like substances with antimicrobial properties that were active against a broad spectrum of bacteria, such as Listeria monocytogenes, Staphylococcus aureus, and Pseudomonas aeruginosa. Selected strains were identified via 16S rRNA sequencing. Most strains exhibited sensitivity to eight types of antibiotics (erythromycin, tetracycline, chloramphenicol, vancomycin, fosfomycin, gentamicin, ampicillin, and netilmicin), lacked hemolysin and gelatinase virulence factors, and did not produce histamine. These findings suggest that marine fish may be a promising source of lactic acid bacteria strains with antimicrobial potential for use as biopreservatives in the food industry.


Assuntos
Anti-Infecciosos , Bacteriocinas , Lactobacillales , Listeria monocytogenes , Animais , Lactobacillales/genética , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , Listeria monocytogenes/genética , Peixes , Alimentos Marinhos/microbiologia , Microbiologia de Alimentos
5.
Compr Rev Food Sci Food Saf ; 22(6): 4516-4536, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615998

RESUMO

Essential oils (EOs) are a class of natural products that exhibit potent antimicrobial properties against a broad spectrum of bacteria. Inhibition diameters (IDs) and minimum inhibitory concentrations (MICs) are the typical measures of antimicrobial activity for extracts and EOs obtained from Cinnamomum, Salvia, and Mentha species. This study used a meta-analytical regression analysis to investigate the correlation between ID and MIC measurements and the variability in antimicrobial susceptibility tests. By utilizing pooled ID models, this study revealed significant differences in foodborne pathogens' susceptibility to extracts, which were dependent on both the plant species and the methodology employed (p < .05). Cassia showed the highest efficacy against Salmonella spp., exhibiting a pooled ID of 26.24 mm, while cinnamon demonstrated the highest efficacy against Bacillus cereus, with a pooled ID of 23.35 mm. Mint extract showed the greatest efficacy against Escherichia coli and Staphylococcus aureus. Interestingly, cinnamon extract demonstrated the lowest effect against Shiga toxin-producing E. coli, with a pooled ID of only 8.07 mm, whereas its EOs were the most effective against this bacterial strain. The study found that plant species influenced the MIC, while the methodology did not affect MIC measurements (p > .05). An inverse correlation between ID and MIC measurements was identified (p < .0001). These findings suggest that extracts and EOs obtained from Cinnamomum, Salvia, and Mentha spp. have the potential to inhibit bacterial growth. The study highlights the importance of considering various factors that may influence ID and MIC measurements when assessing the effectiveness of antimicrobial agents.


Assuntos
Cinnamomum , Mentha , Óleos Voláteis , Salvia , Óleos Voláteis/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Bactérias
6.
Foods ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36981191

RESUMO

Diffusion methods, including agar disk-diffusion and agar well-diffusion, as well as dilution methods such as broth and agar dilution, are frequently employed to evaluate the antimicrobial capacity of extracts and essential oils (EOs) derived from Origanum L., Syzygium aromaticum, and Citrus L. The results are reported as inhibition diameters (IDs) and minimum inhibitory concentrations (MICs), respectively. In order to investigate potential sources of variability in antimicrobial susceptibility testing results and to assess whether a correlation exists between ID and MIC measurements, meta-analytical regression models were built using in vitro data obtained through a systematic literature search. The pooled ID models revealed varied bacterial susceptibilities to the extracts and in some cases, the plant species and methodology utilised impacted the measurements obtained (p < 0.05). Lemon and orange extracts were found to be most effective against E. coli (24.4 ± 1.21 and 16.5 ± 0.84 mm, respectively), while oregano extracts exhibited the highest level of effectiveness against B. cereus (22.3 ± 1.73 mm). Clove extracts were observed to be most effective against B. cereus and demonstrated the general trend that the well-diffusion method tends to produce higher ID (20.5 ± 1.36 mm) than the disk-diffusion method (16.3 ± 1.40 mm). Although the plant species had an impact on MIC, there is no evidence to suggest that the methodology employed had an effect on MIC (p > 0.05). The ID-MIC model revealed an inverse correlation (R2 = 47.7%) and highlighted the fact that the extract dose highly modulated the relationship (p < 0.0001). The findings of this study encourage the use of extracts and EOs derived from Origanum, Syzygium aromaticum, and Citrus to prevent bacterial growth. Additionally, this study underscores several variables that can impact ID and MIC measurements and expose the correlation between the two types of results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA