RESUMO
BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants. The first exposure to PFAS occurs in utero, after birth it continues via breast milk, food intake, environment, and consumer products that contain these chemicals. Our aim was to identify determinants of PFAS concentrations in sensitive population subgroups- pregnant women and newborns. METHODS: Nine European birth cohorts provided exposure data on PFAS in pregnant women (INMA-Gipuzkoa, Sabadell, Valencia, ELFE and MoBa; total N = 5897) or newborns (3xG study, FLEHS 2, FLEHS 3 and PRENATAL; total N = 940). PFOS, PFOA, PFHxS and PFNA concentrations were measured in maternal or cord blood, depending on the cohort (FLEHS 2 measured only PFOS and PFOA). PFAS concentrations were analysed according to maternal characteristics (age, BMI, parity, previous breastfeeding, smoking, and food consumption during pregnancy) and parental educational level. The association between potential determinants and PFAS concentrations was evaluated using multiple linear regression models. RESULTS: We observed significant variations in PFAS concentrations among cohorts. Higher PFAS concentrations were associated with higher maternal age, primipara birth, and educational level, both for maternal blood and cord blood. Higher PFAS concentrations in maternal blood were associated with higher consumption of fish and seafood, meat, offal and eggs. In cord blood, higher PFHxS concentrations were associated with daily meat consumption and higher PFNA with offal consumption. Daily milk and dairy consumption were associated with lower concentrations of PFAS in both, pregnant women and newborns. CONCLUSION: High detection rates of the four most abundant PFAS demonstrate ubiquitous exposure of sensitive populations, which is of concern. This study identified several determinants of PFAS exposure in pregnant women and newborns, including dietary factors, and these findings can be used for proposing measures to reduce PFAS exposure, particularly from dietary sources.
Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Animais , Gravidez , Feminino , Humanos , Populações Vulneráveis , Paridade , DietaRESUMO
Per- and polyfluoroalkyl substances (PFASs) are a highly persistent, mobile, and bioaccumulative class of chemicals, of which emissions into the environment result in long-lasting contamination with high probability for causing adverse effects to human health and the environment. Within the European Biomonitoring Initiative HBM4EU, samples and data were collected in a harmonized way from human biomonitoring (HBM) studies in Europe to derive current exposure data across a geographic spread. We performed mixture risk assessments based on recent internal exposure data of PFASs in European teenagers generated in the HBM4EU Aligned Studies (dataset with N = 1957, sampling years 2014-2021). Mixture risk assessments were performed based on three hazard-based approaches: the Hazard Index (HI) approach, the sum value approach as used by the European Food Safety Authority (EFSA) and the Relative Potency Factor (RPF) approach. The HI approach resulted in the highest risk estimates, followed by the RPF approach and the sum value approach. The assessments indicate that PFAS exposure may result in a health risk in a considerable fraction of individuals in the HBM4EU teenager study sample, thereby confirming the conclusion drawn in the recent EFSA scientific opinion. This study underlines that HBM data are of added value in assessing the health risks of aggregate and cumulative exposure to PFASs, as such data are able to reflect exposure from different sources and via different routes.
Assuntos
Monitoramento Biológico , Fluorocarbonos , Adolescente , Humanos , Medição de Risco , Inocuidade dos Alimentos , BioacumulaçãoRESUMO
BACKGROUND: Perfluoroalkyl substances (PFAS) are man-made fluorinated chemicals, widely used in various types of consumer products, resulting in their omnipresence in human populations. The aim of this study was to describe current PFAS levels in European teenagers and to investigate the determinants of serum/plasma concentrations in this specific age group. METHODS: PFAS concentrations were determined in serum or plasma samples from 1957 teenagers (12-18 years) from 9 European countries as part of the HBM4EU aligned studies (2014-2021). Questionnaire data were post-harmonized by each study and quality checked centrally. Only PFAS with an overall quantification frequency of at least 60% (PFOS, PFOA, PFHxS and PFNA) were included in the analyses. Sociodemographic and lifestyle factors were analysed together with food consumption frequencies to identify determinants of PFAS exposure. The variables study, sex and the highest educational level of household were included as fixed factors in the multivariable linear regression models for all PFAS and each dietary variable was added to the fixed model one by one and for each PFAS separately. RESULTS: The European exposure values for PFAS were reported as geometric means with 95% confidence intervals (CI): PFOS [2.13 µg/L (1.63-2.78)], PFOA ([0.97 µg/L (0.75-1.26)]), PFNA [0.30 µg/L (0.19-0.45)] and PFHxS [0.41 µg/L (0.33-0.52)]. The estimated geometric mean exposure levels were significantly higher in the North and West versus the South and East of Europe. Boys had significantly higher concentrations of the four PFAS compared to girls and significantly higher PFASs concentrations were found in teenagers from households with a higher education level. Consumption of seafood and fish at least 2 times per week was significantly associated with 21% (95% CI: 12-31%) increase in PFOS concentrations and 20% (95% CI: 10-31%) increase in PFNA concentrations as compared to less frequent consumption of seafood and fish. The same trend was observed for PFOA and PFHxS but not statistically significant. Consumption of eggs at least 2 times per week was associated with 11% (95% CI: 2-22%) and 14% (95% CI: 2-27%) increase in PFOS and PFNA concentrations, respectively, as compared to less frequent consumption of eggs. Significantly higher PFOS concentrations were observed for participants consuming offal (14% (95% CI: 3-26%)), the same trend was observed for the other PFAS but not statistically significant. Local food consumption at least 2 times per week was associated with 40% (95% CI: 19-64%) increase in PFOS levels as compared to those consuming local food less frequently. CONCLUSION: This work provides information about current levels of PFAS in European teenagers and potential dietary sources of exposure to PFAS in European teenagers. These results can be of use for targeted monitoring of PFAS in food.