Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transfusion ; 60(11): 2661-2674, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32815181

RESUMO

BACKGROUND: Nanofiltration entails the filtering of protein solutions through membranes with pores of nanometric sizes that have the capability to effectively retain a wide range of viruses. STUDY DESIGN AND METHODS: Data were collected from 754 virus validation studies (individual data points) by Plasma Protein Therapeutics Association member companies and analyzed for the capacity of a range of nanofilters to remove viruses with different physicochemical properties and sizes. Different plasma product intermediates were spiked with viruses and filtered through nanofilters with different pore sizes using either tangential or dead-end mode under constant pressure or constant flow. Filtration was performed according to validated scaled-down laboratory conditions reflecting manufacturing processes. Effectiveness of viral removal was assessed using cell culture infectivity assays or polymerase chain reaction (PCR). RESULTS: The nanofiltration process demonstrated a high efficacy and robustness for virus removal. The main factors affecting nanofiltration efficacy are nanofilter pore size and virus size. The capacity of nanofilters to remove smaller, nonenveloped viruses was dependent on filter pore size and whether the nanofiltration process was integrated and designed with the intention to provide effective parvovirus retention. Volume filtered, operating pressure, and total protein concentration did not have a significant impact on the effectiveness of virus removal capacity within the investigated ranges. CONCLUSIONS: The largest and most diverse nanofiltration data collection to date substantiates the effectiveness and robustness of nanofiltration in virus removal under manufacturing conditions of different plasma-derived proteins. Nanofiltration can enhance product safety by providing very high removal capacity of viruses including small non-enveloped viruses.


Assuntos
Proteínas Sanguíneas/isolamento & purificação , Plasma , Ultrafiltração , Vírus , Proteínas Sanguíneas/uso terapêutico , Humanos , Plasma/química , Plasma/virologia
2.
Transfusion ; 53(9): 1894-905, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23252676

RESUMO

BACKGROUND: The variant Creutzfeldt-Jakob disease incidence peaked a decade ago and has since declined. Based on epidemiologic evidence, the causative agent, pathogenic prion, has not constituted a tangible contamination threat to large-scale manufacturing of human plasma-derived proteins. Nonetheless, manufacturers have studied the prion removal capabilities of various manufacturing steps to better understand product safety. Collectively analyzing the results could reveal experimental reproducibility and detect trends and mechanisms driving prion removal. STUDY DESIGN AND METHODS: Plasma Protein Therapeutics Association member companies collected more than 200 prion removal studies on plasma protein manufacturing steps, including precipitation, adsorption, chromatography, and filtration, as well as combined steps. The studies used a range of model spiking agents and bench-scale process replicas. The results were grouped based on key manufacturing variables to identify factors impacting removal. The log reduction values of a group are presented for comparison. RESULTS: Overall prion removal capacities evaluated by independent groups were in good agreement. The removal capacity evaluated using biochemical assays was consistent with prion infectivity removal measured by animal bioassays. Similar reduction values were observed for a given step using various spiking agents, except highly purified prion protein in some circumstances. Comparison between combined and single-step studies revealed complementary or overlapping removal mechanisms. Steps with high removal capacities represent the conditions where the physiochemical differences between prions and therapeutic proteins are most significant. CONCLUSION: The results support the intrinsic ability of certain plasma protein manufacturing steps to remove prions in case of an unlikely contamination, providing a safeguard to products.


Assuntos
Proteínas Sanguíneas/química , Príons/isolamento & purificação , Precipitação Química , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Síndrome de Creutzfeldt-Jakob/prevenção & controle , Contaminação de Medicamentos/prevenção & controle , Filtração , Humanos
3.
Transfusion ; 51(7): 1412-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21251002

RESUMO

BACKGROUND: Virus removal by partitioning into different fractions during cold ethanol fractionation has been described by several authors, demonstrating that cold ethanol fractionation can provide significant contribution to virus removal, even in those cases where virus removal is limited and must be supported by additional measures for virus inactivation during further processing. STUDY DESIGN AND METHODS: Plasma Protein Therapeutics Association (PPTA) member companies collected and evaluated 615 studies on virus removal by the steps of the cold ethanol fractionation process. The studies describe the precipitation and separation of Fraction (F)III or FI/III in the immunoglobulin fractionation process and precipitation and separation of FII/III, FI/II/III, and FIV/IV in the albumin fractionation process. RESULTS: The data indicate a significant contribution of cold ethanol fractionation to the overall clearance of a broad spectrum of viruses, at varied process variables such as pH, temperature, and alcohol concentration and demonstrate the robustness of virus removal by the cold ethanol fractionation process. CONCLUSIONS: The data presented here support the importance of the partitioning steps for virus safety for immunoglobulins and albumin. However, virus removal by cold ethanol fractionation alone cannot provide viral safety of human albumin and immunoglobulins and therefore must be completed by other virus inactivation and removal procedures.


Assuntos
Imunoglobulinas/isolamento & purificação , Albumina Sérica/isolamento & purificação , Inativação de Vírus , Fracionamento Químico , Coleta de Dados , Etanol , Humanos , Imunoglobulinas/uso terapêutico , Segurança , Albumina Sérica/normas , Albumina Sérica/uso terapêutico
4.
Transfusion ; 49(9): 1931-43, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19497061

RESUMO

BACKGROUND: Solvent/detergent (S/D) treatment is an established virus inactivation technology that has been applied in the manufacture of medicinal products derived from human plasma for more than 20 years. Data on the inactivation of enveloped viruses by S/D treatment collected from seven Plasma Protein Therapeutics Association member companies demonstrate the robustness, reliability, and efficacy of this virus inactivation method. STUDY DESIGN AND METHODS: The results from 308 studies reflecting production conditions as well as technical variables significantly beyond the product release specification were evaluated for virus inactivation, comprising different combinations of solvent and detergent (tri(n-butyl) phosphate [TNBP]/Tween 80, TNBP/Triton X-100, TNBP/Na-cholate) and different products (Factor [F]VIII, F IX, and intravenous and intramuscular immunoglobulins). RESULTS: Neither product class, process temperature, protein concentration, nor pH value has a significant impact on virus inactivation. A variable that did appear to be critical was the concentration of solvent and detergent. CONCLUSION: The data presented here demonstrate the robustness of virus inactivation by S/D treatment for a broad spectrum of enveloped test viruses and process variables. Our data substantiate the fact that no transmission of viruses such as human immunodeficiency virus, hepatitis B virus, hepatitis C virus, or of other enveloped viruses was reported for licensed plasma derivatives since the introduction of S/D treatment.


Assuntos
Detergentes/farmacologia , Plasma/virologia , Solventes/farmacologia , Inativação de Vírus/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Fator IX/metabolismo , Fator VIII/metabolismo , Humanos , Imunoglobulina M/metabolismo , Imunoglobulinas Intravenosas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA