RESUMO
Therapy-related myeloid neoplasms (t-MN) are characterized by aggressive features and a dismal prognosis. Recent evidence suggests a higher incidence of t-MN in individuals harboring clonal hematopoiesis of indeterminate potential (CHIP). In order to gain insight into CHIP-driven malignant progression, we gathered data from ten published reports with available detailed patient characteristics at the time of primary malignancy and t-MN development. Detailed clinical and molecular information on primary malignancy and t-MN were available for 109 patients: 43% harbored at least one somatic mutation at the time of the primary malignancy. TET2 and TP53 mutations showed an increasing variant allele frequency from CHIP to t-MN. ASXL1-associated CHIP significantly correlated with the emergence of TET2 and CEBPA mutations at t-MN, as well as U2AF1-driven CHIP with EZH2 mutation and both IDH2 and SRSF2-driven CHIP with FLT3 mutation. DNMT3A-driven CHIP correlated with a lower incidence of TP53 mutation at t-MN. In contrast, TP53-driven CHIP correlated with a complex karyotype and a lower tendency to acquire new mutations at t-MN. Patients with multiple myeloma as their first malignancy presented a significantly higher rate of TP53 mutations at t-MN. The progression from CHIP to t-MN shows different scenarios depending on the genes involved. A deeper knowledge of CHIP progression mechanisms will allow a more reliable definition of t-MN risk.
Assuntos
Mutação , Segunda Neoplasia Primária , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hematopoiese Clonal/genética , Progressão da Doença , Transtornos Mieloproliferativos/genética , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/etiologiaRESUMO
Bullous pemphigoid (BP) is a rare blistering disease often considered a primary sign of a paraneoplastic syndrome. Retrospective studies have established its link with hematological malignancies, particularly lymphoproliferative disorders. Here, we present what we believe to be the inaugural case of successful simultaneous management of BP and de novo acute myeloid leukemia (AML) in a 28-year-old male patient. Given the rarity and severity of both conditions, our treatment strategy aimed to maximize efficacy by combining immunosuppressive therapy (initially plasmapheresis with high-dose corticosteroids, followed by anti-CD20 monoclonal antibody and intravenous immunoglobulins 2 g/m2) with lymphodepleting antileukemic chemotherapy utilizing Fludarabine (FLAG-IDA induction regimen). Following diagnosis, considering the patient's youth and the concurrent presence of two rare and potentially life-threatening diseases, we opted for an aggressive treatment. Upon achieving complete morphological remission of AML with measurable residual disease (MRD) negativity, despite incomplete resolution of BP, we proceeded with high-dose cytarabine consolidation followed by peripheral stem cell harvest and autologous stem cell transplantation (ASCT). Our conditioning regimen for ASCT involved Bu-Cy with the addition of anti-thymocyte globulins. At day + 100 post-ASCT, bone marrow evaluation confirmed morphological remission and MRD negativity. Meanwhile, BP had completely resolved with normalization of BP180 antibody levels.
Assuntos
Leucemia Mieloide Aguda , Síndromes Paraneoplásicas , Humanos , Masculino , Adulto , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/complicações , Síndromes Paraneoplásicas/etiologia , Síndromes Paraneoplásicas/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Penfigoide Bolhoso/terapia , Penfigoide Bolhoso/tratamento farmacológico , Citarabina/administração & dosagem , Citarabina/uso terapêutico , Imunossupressores/uso terapêutico , Pênfigo/terapia , Pênfigo/complicações , Vidarabina/análogos & derivados , Vidarabina/uso terapêutico , Vidarabina/administração & dosagem , Imunoglobulinas Intravenosas/uso terapêutico , Plasmaferese , Medicina de PrecisãoRESUMO
Acute myeloid leukemia (AML) is a disease with a dismal prognosis, mainly affecting the elderly. In recent years, new drugs have improved life expectancy and quality of life, and a better understanding of the genetic-molecular nature of the disease has shed light on previously unknown aspects of leukemogenesis. In parallel, increasing attention has been attracted to the complex interactions between cells and soluble factors in the bone marrow (BM) environment, collectively known as the microenvironment. In this review, we discuss the central role of the microenvironment in physiologic and pathologic hematopoiesis and the mechanisms of senescence, considered a fundamental protective mechanism against the proliferation of damaged and pretumoral cells. The microenvironment also represents a fertile ground for the development of myeloid malignancies, and the leukemic niche significantly interacts with drugs commonly used in AML treatment. Finally, we focus on the role of the microenvironment in the engraftment and complications of allogeneic hematopoietic stem cell transplantation, the only curative option in a conspicuous proportion of patients.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Idoso , Qualidade de Vida , Microambiente Tumoral , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Medula Óssea/patologiaRESUMO
Therapy-related Myeloid Neoplasm (t-MN) represents one of the worst long-term consequences of cytotoxic therapy for primary tumors and autoimmune disease. Poor survival and refractoriness to current treatment strategies characterize affected patients from a clinical point of view. In our aging societies, where newer therapies and ameliorated cancer management protocols are improving the life expectancy of cancer patients, therapy-related Myeloid Neoplasms are an emerging problem. Although several research groups have contributed to characterizing the main risk factors in t-MN development, the multiplicity of primary tumors, in association with the different therapeutic strategies available and the new drugs in development, make interpreting the current data still complex. The main risk factors involved in t-MN pathogenesis can be subgrouped into patient-specific, inherited, and acquired predispositions. Although t-MN can occur at any age, the risk tends to increase with advancing age, and older patients, characterized by a higher number of comorbidities, are more likely to develop the disease. Thanks to the availability of deep sequencing techniques, germline variants have been reported in 15-20% of t-MN patients, highlighting their role in cancer predisposition. It is becoming increasingly evident that t-MN with driver gene mutations may arise in the background of Clonal Hematopoiesis of Indeterminate Potential (CHIP) under the positive selective pressure of chemo and/or radiation therapies. Although CHIP is generally considered benign, it has been associated with an increased risk of t-MN. In this context, the phenomenon of clonal evolution may be described as a dynamic process of expansion of preexisting clones, with or without acquisition of additional genetic alterations, that, by favoring the proliferation of more aggressive and/or resistant clones, may play a crucial role in the progression from preleukemic states to t-MN.
RESUMO
Diagnosis and prognostic stratification of myelodysplastic syndromes (MDS) have been complemented by new techniques, including flow cytometry and NGS. To analyze the relationship between molecular and cytofluorimetric data, we enrolled in this retrospective study, 145 patients, including 106 diagnosed with MDS and 39 controls. At disease onset, immunophenotypic (IF), cytogenetic tests, and cytomorphological (CM) examination on bone marrow were carried out in all patients, while NGS was performed in 58 cases. Ogata score presented a specificity of 100% and a sensitivity of 59%. The detection of at least two phenotypic aberrancies in Ogata negative patients increased the sensitivity to 83% and specificity to 87%. Correlations were identified between IF aberrancies and mutations, including positive Ogata>2 and mutations in SRSF2 (p=0.035), CD15 and U2AF1 (0.032), CD56 and DNMT3A (p=0.042), and CD38 and TP53 (p=0.026). In multivariate analysis, U2AF1 mutations, associated with del(20q) and/or abnormalities of chromosome 7 (group 4 as defined by the EuroMDS score), significantly correlated with an inferior overall survival (p=0.019). These parameters and Ogata score>2 also showed a significant correlation with inferior event-free survival (p=0.023 and p=0.041, respectively). Both CM and FC features correlated with prognosis and mutational patterns. In an integrated MDS work-up, these tools may guide indications for mutational screening for optimal risk stratification.
RESUMO
OBJECTIVE AND DESIGN: Systemic-Inflammatory-Autoimmune-Diseases (SIAD) is increasingly considered in Myelodysplastic-Syndromes (MDS). In this line, we evaluated the MDS auto-immunological profile, correlating it to the mutational landscape, trying to identify a molecular-genetic trigger agent related to SIAD. METHODS AND MATERIALS: Eighty-one MDS were enrolled and t-NGS was performed. Anti-Nuclear-Antibodies (ANA) were tested, and ANA-antigenic-specificity was characterized by ANA-profile, ENA-screen, anti-dsDNA. Non-Hematological-Patients (NHP) and Healthy-Donors (HD) were used as controls. RESULTS: At clinically relevant cut-off (≥ 1:160), ANA was significantly more frequent in MDS, while ANA-antigenic-specificity showed a low association rate. ANA ≥ 1:160-positive MDS showed a mutational landscape similar to ANA-negative/ANA < 1:160 MDS. No significant correlations between mutational and immunological profiles were found and UBA1 mutations, related to VEXAS, were absent. CONCLUSIONS: Although ANA-positivity was found to be increased in MDS, the low ANA-antigenic-specificity suggests that autoantibodies didn't recognize autoimmune-pathognomonic antigens. The lack of relationship between genetic profile and ANA-positivity, suggests that MDS genetic variants may not be the direct cause of SIAD.
Assuntos
Autoanticorpos , Síndromes Mielodisplásicas , Humanos , Anticorpos Antinucleares , Mutação , Síndromes Mielodisplásicas/genéticaRESUMO
The increasing knowledge of molecular genetics of acute myeloid leukemia (AML) necessitated the update of previous diagnostic and prognostic schemes, which resulted in the development of the World Health Organization (WHO), the International Consensus Classification (ICC), and the new European LeukemiaNet (ELN) recommendations in 2022. We aimed to provide a real-world application of the new models, unravel differences and similarities, and test their implementation in clinical AML diagnosis. A total of 1001 patients diagnosed with AML were reclassified based on the new schemes. The overall diagnostic changes between the WHO 2016 and the WHO 2022 and ICC classifications were 22.8% and 23.7%, respectively, with a 13.1% difference in patients' distribution between ICC and WHO 2022. The 2022 ICC "not otherwise specified" and WHO "defined by differentiation" AML category sizes shrank when compared with that in WHO 2016 (24.1% and 26.8% respectively, vs 38.7%), particularly because of an expansion of the myelodysplasia (MDS)-related group. Of 397 patients with a MDS-related AML according to the ICC, 55.9% were defined by the presence of a MDS-related karyotype. The overall restratification between ELN 2017 and ELN 2022 was 12.9%. The 2022 AML classifications led to a significant improvement of diagnostic schemes. In the real-world setting, conventional cytogenetics, usually rapidly available and less expensive than molecular characterization, stratified 56% of secondary AML, still maintaining a powerful diagnostic role. Considering the similarities between WHO and ICC diagnostic schemes, a tentative scheme to generate a unified model is desirable.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/complicações , Síndromes Mielodisplásicas/diagnóstico , Prognóstico , Citogenética , Organização Mundial da SaúdeRESUMO
Bone marrow mesenchymal stem cells (BM-MSCs) exhibit multiple abnormalities in myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML), including reduced proliferative and clonogenic capacity, altered morphology, impaired immunoregulatory properties and capacity to support hematopoiesis. Here, we investigated expression of the FOXM1 gene, a transcription factor driving G2/M gene expression, in BM-MSCs isolated from patients with MDS and AML, de novo and therapy-related, compared to BM-MSCs isolated from healthy donors (HD). We observed a statistically significant downregulation of FOXM1 expression in BM-MSCs isolated from MDS and AML patients, as compared to controls. In parallel, expression of FOXM1 mitotic targets (CCNB1, CDC20, PLK1 and NDC80) was suppressed in patients' BM-MSCs, as compared to HD. No differences in the expression of FOXM1 and its mitotic targets were observed in BM-mononuclear cells from the different sources. From a functional standpoint, silencing of FOXM1 mRNA in healthy MSC induced a significant decrease in the expression of its targets. In this line, healthy MSC silenced for FOXM1 showed an impaired ability to support hematopoiesis in vitro. These findings suggest that deregulation of FOXM1 may be involved in the senescent phenotype observed in MSC derived from myeloid neoplasms.
Assuntos
Proteína Forkhead Box M1 , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Humanos , Proteína Forkhead Box M1/genética , Síndromes Mielodisplásicas/genética , Leucemia Mieloide Aguda/genéticaRESUMO
Vitamin C has been shown to play a significant role in suppressing progression of leukemia through epigenetic mechanisms. We aimed to study the role of vitamin C in acute myeloid leukemia (AML) biology and clinical course. To this purpose, the plasma levels of vitamin C at diagnosis in 62 patients with AML (including 5 cases with acute promyelocytic leukemia, APL),7 with myelodysplastic syndrome (MDS), and in 15 healthy donors (HDs) were studied. As controls, vitamins A and E levels were analysed. Expression of the main vitamin C transporters and of the TET2 enzyme were investigated by a specific RQ-PCR while cytoplasmic vitamin C concentration and its uptake were studied in mononuclear cells (MNCs), lymphocytes and blast cells purified from AML samples, and MNCs isolated from HDs. There were no significant differences in vitamin A and E serum levels between patients and HDs. Conversely, vitamin C concentration was significantly lower in AML as compared to HDs (p<0.0001), inversely correlated with peripheral blast-counts (p=0.029), significantly increased at the time of complete remission (CR) (p=0.04) and further decreased in resistant disease (p=0.002). Expression of the main vitamin C transporters SLC23A2, SLC2A1 and SLC2A3 was also significantly reduced in AML compared to HDs. In this line, cytoplasmic vitamin C levels were also significantly lower in AML-MNCs versus HDs, and in sorted blasts compared to normal lymphocytes in individual patients. No association was found between vitamin C plasma levels and the mutation profile of AML patients, as well as when considering cytogenetics or 2017 ELN risk stratification groups. Finally, vitamin C levels did not play a predictive role for overall or relapse-free survival. In conclusion, our study shows that vitamin C levels are significantly decreased in patients with AML at the time of initial diagnosis, further decrease during disease progression and return to normal upon achievement of CR. Correspondingly, low intracellular levels may mirror increased vitamin C metabolic consumption in proliferating AML cells.
RESUMO
BACKGROUND: Although hypomethylating agents are currently used to treat patients with cancer, whether they can also reactivate and up-regulate oncogenes is not well elucidated. METHODS: We examined the effect of hypomethylating agents on SALL4, a known oncogene that plays an important role in myelodysplastic syndrome and other cancers. Paired bone marrow samples that were obtained from two cohorts of patients with myelodysplastic syndrome before and after treatment with a hypomethylating agent were used to explore the relationships among changes in SALL4 expression, treatment response, and clinical outcome. Leukemic cell lines with low or undetectable SALL4 expression were used to study the relationship between SALL4 methylation and expression. A locus-specific demethylation technology, CRISPR-DNMT1-interacting RNA (CRISPR-DiR), was used to identify the CpG island that is critical for SALL4 expression. RESULTS: SALL4 up-regulation after treatment with hypomethylating agents was observed in 10 of 25 patients (40%) in cohort 1 and in 13 of 43 patients (30%) in cohort 2 and was associated with a worse outcome. Using CRISPR-DiR, we discovered that demethylation of a CpG island within the 5' untranslated region was critical for SALL4 expression. In cell lines and patients, we confirmed that treatment with a hypomethylating agent led to demethylation of the same CpG region and up-regulation of SALL4 expression. CONCLUSIONS: By combining analysis of patient samples with CRISPR-DiR technology, we found that demethylation and up-regulation of an oncogene after treatment with a hypomethylating agent can indeed occur and should be further studied. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).
Assuntos
Antineoplásicos , Desmetilação , Síndromes Mielodisplásicas , Oncogenes , Regulação para Cima , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desmetilação/efeitos dos fármacos , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes/efeitos dos fármacos , Oncogenes/fisiologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
The addition of Venetoclax (VEN) to Hypomethylating agents (HMAs) significantly improves the probability of complete remission and prolongs survival in patients with Acute Myeloid Leukemia (AML) when compared to HMA alone. However, the mutated clone composition may impact the probability of response and its duration. Here, we describe the molecular profile of a patient with AML rapidly evolved from a previous therapy-related-Chronic MyeloMonocytic Leukemia, who achieved safely complete remission after treatment with the VEN/Azacitidine combination, even in the presence of SARS-COVID-2 infection. The targeted NGS analysis showed that the VEN/AZA combination led to the eradication of the FLT3-ITD and RUNX1 mutated clone/s primarily associated with AML evolution, and subsequently, the SRSF2, NRAS, and ASXL1 mutated clone/s. This case also underlines the importance of the sequential use of targeted NGS for disease monitoring: the deep molecular remission achieved by this patient allowed to safely guide adjustments of drug dosage and treatment intervals in the presence of neutropenia, helping to rule out disease progression.
RESUMO
The aim of our review has been to give an appropriate idea of analogies and differences between primitive MDS (p-MDS) and t-MDS throughout an accurate reviewing of English peer-reviewed literature focusing on clinical, cytogenetic, epigenetic, and somatic mutation features of these two groups of diseases. Therapy-related MDS (t-MDS) are classified by WHO together with therapy-related acute myeloid leukemia (t-AML) in the same group, named therapy-related myeloid neoplasm. However, in clinical practice, the diagnosis of t-MDS is made with the same criteria as for primitive MDS (p-MDS), and the only difference is a previous non-myeloid neoplasm. The prognosis and the consequent therapy can be established following the same criteria as for p-MDS, and the therapy is generally decided using the same criteria. We stress the possible difference in cytogenetics, mutations, and epigenetics to distinguish the two forms. Actually, there is no marker specific for t-MDS either in cytogenetics, epigenetics, or mutations; however, some alterations are also frequent in t-MDS and, in general, they induce a poorer prognosis. So, the high-risk forms in t-MDS are prevalent. The present literature data suggest classifying the t-MDS as a subgroup of MDS and introducing some parameters to evaluate the probability of previous therapy in inducing MDS. An important issue remains the patient's fitness, which strongly influences the outcome.
RESUMO
Acute promyelocytic leukemia (APL) accounts for 10-15% of newly diagnosed acute myeloid leukemias (AML) and is typically caused by the fusion of promyelocytic leukemia with retinoic acid receptor α (RARA) gene. The prognosis is excellent, thanks to the all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) combination therapy. A small percentage of APLs (around 2%) is caused by atypical transcripts, most of which involve RARA or other members of retinoic acid receptors (RARB or RARG). The diagnosis of these forms is difficult, and clinical management is still a challenge for the physician due to variable response rates to ATRA and ATO. Herein we review variant APL cases reported in literature, including genetic landscape, incidence of coagulopathy and differentiation syndrome, frequent causes of morbidity and mortality in these patients, sensitivity to ATRA, ATO, and chemotherapy, and outcome. We also focus on non-RAR rearrangements, complex rearrangements (involving more than two chromosomes), and NPM1-mutated AML, an entity that can, in some cases, morphologically mimic APL.
RESUMO
Clonal haematopoiesis of indeterminate potential (CHIP) may predispose for the development of therapy-related myeloid neoplasms (t-MN). Using target next-generation sequencing (t-NGS) panels and digital droplet polymerase chain reactions (ddPCR), we studied the myeloid gene mutation profiles of patients with chronic lymphocytic leukaemia (CLL) who developed a t-MN after treatment with chemo-(immuno)therapy. Using NGS, we detected a total of 30 pathogenic/likely pathogenic (P/LP) variants in 10 of 13 patients with a t-MN (77%, median number of variants for patient: 2, range 0-6). The prevalence of CHIP was then backtracked in paired samples taken at CLL diagnosis in eight of these patients. Six of them carried at least one CHIP-variant at the time of t-MN (median: 2, range: 1-5), and the same variants were present in the CLL sample in five cases. CHIP variants were present in 34 of 285 patients from a population-based CLL cohort, which translates into a significantly higher prevalence of CHIP in patients with a CLL who developed a t-MN, compared to the population-based cohort (5/8, 62.5% vs. 34/285, 12%, p = 0.0001). Our data show that CHIP may be considered as a novel parameter affecting treatment algorithms in patients with CLL, and highlight the potential of using chemo-free therapies in CHIP-positive cases.
Assuntos
Leucemia Linfocítica Crônica de Células B , Segunda Neoplasia Primária , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Hematopoiese Clonal/genética , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Segunda Neoplasia Primária/etiologia , Segunda Neoplasia Primária/genética , Fatores de RiscoRESUMO
BACKGROUND: The ZBTB16-RARA fusion gene, resulting from the reciprocal translocation between ZBTB16 on chromosome 11 and RARA genes on chromosome 17 [t(11;17)(q23;q21)], is rarely observed in acute myeloid leukemia (AML), and accounts for about 1% of retinoic acid receptor-α (RARA) rearrangements. AML with this rare translocation shows unusual bone marrow (BM) morphology, with intermediate aspects between acute promyelocytic leukemia (APL) and AML with maturation. Patients may have a high incidence of disseminated intravascular coagulation at diagnosis, are poorly responsive to all-trans retinoic acid (ATRA) and arsenic tryoxyde, and are reported to have an overall poor prognosis. AIMS: The mutational profile of ZBTB16-RARA rearranged AML has not been described so far. MATERIALS AND METHODS: We performed targeted next-generation sequencing of 24 myeloid genes in BM diagnostic samples from seven ZBTB16-RARA+AML, 103 non-RARA rearranged AML, and 46 APL. The seven ZBTB16-RARA-positive patients were then screened for additional mutations using whole exome sequencing (n = 3) or an extended cancer panel including 409 genes (n = 4). RESULTS: ZBTB16-RARA+AML showed an intermediate number of mutations per patient and involvement of different genes, as compared to APL and other AMLs. In particular, we found a high incidence of ARID1A mutations in ZBTB16-RARA+AML (five of seven cases, 71%). Mutations in ARID2 and SMARCA4, other tumor suppressor genes also belonging to SWI/SNF chromatin remodeling complexes, were also identified in one case (14%). DISCUSSION AND CONCLUSION: Our data suggest the association of mutations of the ARID1A gene and of the other members of the SWI/SNF chromatin remodeling complexes with ZBTB16-RARA+AMLs, where they may support the peculiar disease phenotype.
Assuntos
Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Receptor alfa de Ácido Retinoico/genética , Translocação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Medula Óssea/patologia , Criança , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 17 , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Coagulação Intravascular Disseminada/epidemiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Prognóstico , Fatores de Transcrição/genética , Tretinoína/uso terapêuticoRESUMO
The mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here, we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA and DNA interactions with the broadly expressed Runt-related transcription factor 1 (RUNX1), we identified the long noncoding RNA (lncRNA) originating from the upstream regulatory element of PU.1 (LOUP). This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia (AML), wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein, RUNX1-ETO, limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell-type-specific RNAs and transcription factors, as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , RNA Longo não Codificante/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica , Humanos , Ativação TranscricionalRESUMO
Therapy-related myeloid neoplasms (t-MNs) include diseases onsetting in patients treated with chemo- and/or radiotherapy for a primary cancer, or an autoimmune disorder. Genomic variants, in particular, in familial cancer genes, may play a predisposing role. Recent advances in deep sequencing techniques have shed light on the pathogenesis of t-MNs, identifying clonal hematopoiesis of indeterminate potential (CHIP) as a frequent first step in the multihit model of t-MNs. CHIP is often detectable prior to any cytotoxic treatment, probably setting the fertile genomic background for secondary leukemogenesis. The evolution pattern toward t-MNs is then a complex process, shaped by the type of cancer therapy, the aging process, and the individual exposures, that favor additional hits, such as the acquisition of TP53 mutations and unfavorable karyotype abnormalities. The pathogenesis of t-MNs differs from MN associated with environmental exposure. Indeed, the genetic aberration patterns of MN developing in atomic bomb survivors show few mutations in classical DNA methylation genes, and a high prevalence of 11q and ATM alterations, together with TP53 mutations. Survival in t-MNs is poor. In addition to the biology of t-MNs, the patient's previous disease history and the remission status at t-MN diagnosis are significant factors contributing to unfavorable outcome. New drugs active in secondary leukemias include CPX-351, or venetoclax in combination with hypomethylating agents, monoclonal antibodies as magrolimab, or targeted drugs against pathogenic mutations. Allogeneic stem cell transplantation remains the best currently available therapeutic option with curative intent for fit patients with unfavorable genetic profiles.
Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Mutação , Transtornos Mieloproliferativos , Proteínas de Neoplasias , Segunda Neoplasia Primária , Aloenxertos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/terapia , Humanos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/terapia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/metabolismo , Segunda Neoplasia Primária/patologia , Segunda Neoplasia Primária/terapiaRESUMO
Clonal hematopoiesis (CH) has been recognized as a predisposing factor for the development of myeloid malignancies. Its detection has been reported at different frequencies across studies, based on the type of genome scanning approach used and the population studied, but the latest insights recognize its virtual ubiquitous presence in older individuals. The discovery of CH in recent years paved the way for a shift in the paradigm of our understanding of the biology of therapy-related myeloid malignancies (t-MNs). Indeed, we moved from the concept of a treatment-induced lesion to a model where CH precedes the commencement of any cancer-related treatment in patients who subsequently develop a t-MN. Invariant patterns of genes seem to contribute to the arising of t-MN cases, with differences regarding the type of treatment received. Here, we review the principal studies concerning CH, the relationship with myeloid progression and the mechanisms of secondary t-MN development.
RESUMO
Thrombocytopenia is a severe complication for patients with myelodysplastic syndrome (MDS). Eltrombopag increases platelet count in MDS patients but its combination with azacitidine elicited controversial results. We aimed to quantify the colony forming units of megakaryocytes (CFU-Mk) obtained from CD34+ bone marrow cells isolated from patients with MDS and from healthy donors that were cultured in vitro in the presence or absence of azacitidine and with or without the sequential addition of eltrombopag to the culture medium. CD34+ bone marrow cells from 6 MDS patients and 3 controls were expanded in vitro and cultured for 3 days with or without azacitidine. Subsequently, a CFU-Mk assay was performed in presence or absence of eltrombopag. The addition of eltrombopag in the CFU-Mk assay after mock treatment of CD34+ cells increased the number of CFU-Mk in both controls and patients. On the contrary, using azacitidine pretreated CD34+ cells, eltrombopag minimally increased CFU-Mk in controls and produced heterogeneous response in MDS patients with no change in two patients and CFU-Mk increase in four patients. In vitro CFU-Mk assay suggest that some MDS patients are likely to benefit from the sequential addition of eltrombopag after azacitidine treatment, in the context of a personalized medicine.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/uso terapêutico , Benzoatos/uso terapêutico , Hidrazinas/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Pirazóis/uso terapêutico , Trombopoese/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Azacitidina/farmacologia , Benzoatos/farmacologia , Humanos , Hidrazinas/farmacologia , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Pirazóis/farmacologiaRESUMO
Acute myeloid leukemia (AML) with FLT3-ITD mutations (FLT3-ITDmut) remains a therapeutic challenge, with a still high relapse rate, despite targeted treatment with tyrosine kinase inhibitors. In this disease, the CD34/CD123/CD25/CD99+ leukemic precursor cells (LPCs) phenotype predicts for FLT3-ITD-positivity. The aim of this study was to characterize the distribution of FLT3-ITD mutation in different progenitor cell subsets to shed light on the subclonal architecture of FLT3-ITDmut AML. Using high-speed cell sorting, we sequentially purified LPCs and CD34+ progenitors in samples from patients with FLT3-ITDmut AML (n = 12). A higher FLT3-ITDmut load was observed within CD34/CD123/CD25/CD99+ LPCs, as compared to CD34+ progenitors (CD123+/-,CD25-,CD99low/-) (p = 0.0005) and mononuclear cells (MNCs) (p < 0.0001). This was associated with significantly increased CD99 mean fluorescence intensity in LPCs. Significantly higher FLT3-ITDmut burden was also observed in LPCs of AML patients with a small FLT3-ITDmut clones at diagnosis. On the contrary, the mutation burden of other myeloid genes was similar in MNCs, highly purified LPCs and/or CD34+ progenitors. Treatment with an anti-CD99 mAb was cytotoxic on LPCs in two patients, whereas there was no effect on CD34+ cells from healthy donors. Our study shows that FLT3-ITD mutations occur early in LPCs, which represent the leukemic reservoir. CD99 may represent a new therapeutic target in FLT3-ITDmut AML.