Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Neurosci Biobehav Rev ; : 105797, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971515

RESUMO

Cognitive decline is commonly seen both in normal aging and in neurodegenerative and neuropsychiatric diseases. Various experimental animal models represent a valuable tool to study brain cognitive processes and their deficits. Equally important is the search for novel drugs to treat cognitive deficits and improve cognitions. Complementing rodent and clinical findings, studies utilizing zebrafish (Danio rerio) are rapidly gaining popularity in translational cognitive research and neuroactive drug screening. Here, we discuss the value of zebrafish models and assays for screening nootropic (cognitive enhancer) drugs and the discovery of novel nootropics. We also discuss the existing challenges, and outline future directions of research in this field.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38354895

RESUMO

Cerebral cortex is found only in mammals and is particularly prominent and developed in humans. Various rodent models with fully or partially ablated cortex are commonly used to probe the role of cortex in brain functions and its multiple subcortical projections, including pallium, thalamus and the limbic system. Various rodent models are traditionally used to study the role of cortex in brain functions. A small teleost fish, the zebrafish (Danio rerio), has gained popularity in neuroscience research, and albeit (like other fishes) lacking cortex, its brain performs well some key functions (e.g., memory, consciousness and motivation) with complex, context-specific and well-defined behaviors. Can rodent and zebrafish models help generate insights into the role of cortex in brain functions, and dissect its cortex-specific (vs. non-cortical) functions? To address this conceptual question, here we evaluate brain functionality in intact vs. decorticated rodents and further compare it in the zebrafish, a naturally occurring acortical species. Overall, comparing cortical and acortical rodent models with naturally acortical zebrafish reveals both distinct and overlapping contributions of neocortex and 'precortical' zebrafish telencephalic regions to higher brain functions. Albeit morphologically different, mammalian neocortex and fish pallium may possess more functional similarities than it is presently recognized, calling for further integrative research utilizing both cortical and decorticated/acortical vertebrate model organisms.


Assuntos
Roedores , Peixe-Zebra , Humanos , Animais , Córtex Cerebral , Telencéfalo , Encéfalo
3.
Neurosci Biobehav Rev ; 155: 105429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863278

RESUMO

Human neocortex controls and integrates cognition, emotions, perception and complex behaviors. Aberrant cortical development can be triggered by multiple genetic and environmental factors, causing cortical malformations. Animal models, especially rodents, are a valuable tool to probe molecular and physiological mechanisms of cortical malformations. Complementing rodent studies, the zebrafish (Danio rerio) is an important model organism in biomedicine. Although the zebrafish (like other fishes) lacks neocortex, here we argue that this species can still be used to model various aspects and brain phenomena related to human cortical malformations. We also discuss novel perspectives in this field, covering both advantages and limitations of using mammalian and zebrafish models in cortical malformation research. Summarizing mounting evidence, we also highlight the importance of translationally-relevant insights into the pathogenesis of cortical malformations from animal models, and discuss future strategies of research in the field.


Assuntos
Encéfalo , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/fisiologia , Modelos Animais , Comportamento Animal/fisiologia , Mamíferos , Modelos Teóricos , Modelos Animais de Doenças
4.
Artigo em Inglês | MEDLINE | ID: mdl-37127059

RESUMO

While pain results from the activation of nociceptors following noxious stimuli, mounting evidence links pain- and stress-related responses in mammals. In zebrafish, the activation of hypothalamic-pituitary-interrenal (HPI) axis may also regulate body pigmentation (the camouflage response). Here, we aimed to investigate a putative relationship between pain-, stress-, and camouflage-related parameters in adult zebrafish. To answer this question, we assessed whether intraperitoneal acetic acid injection can activate the HPI axis, measuring whole-body cortisol and the camouflage response as physiological endpoints in the presence or absence of morphine or naloxone, an opioid antagonist. Acetic acid induced a stereotypic circling behavior in the top of the tank, accompanied by abdominal writhing-like response, a specific phenotype that reflects local nociceptive effect. Both whole-body cortisol levels and camouflage response increased in the acetic acid group, while morphine prevented these responses, and naloxone antagonized morphine-induced effects. Moreover, we observed positive correlations between representative behavioral, physiological and skin coloration endpoints, and a "pain index" was proposed to summarize phenotypic profile of zebrafish under different pharmacological manipulations. Collectively, these findings suggest a coordinated activation of pain, camouflage- and stress-related pathways following acetic acid injection in zebrafish. Our data also support that camouflage response represents a novel and relevant biomarker for future probing pain and stress neurobiology, with a robust sensitivity to opioidergic drugs.


Assuntos
Ácido Acético , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Ácido Acético/toxicidade , Ácido Acético/metabolismo , Hidrocortisona/metabolismo , Naloxona/farmacologia , Naloxona/metabolismo , Morfina/toxicidade , Morfina/metabolismo , Dor , Fenótipo , Mamíferos/metabolismo
5.
Viruses ; 15(4)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37112918

RESUMO

SARS-CoV-2 (COVID-19) infection is responsible for causing a disease with a wide spectrum of clinical presentations. Predisposition to thromboembolic disease due to excessive inflammation is also attributed to the disease. The objective of this study was to characterize the clinical and laboratory aspects of hospitalized patients, in addition to studying the pattern of serum cytokines, and associate them with the occurrence of thromboembolic events. METHODOLOGY: A retrospective cohort study with 97 COVID-19 patients hospitalized from April to August 2020 in the Triângulo Mineiro macro-region was carried out. A review of medical records was conducted to evaluate the clinical and laboratory aspects and the frequency of thrombosis, as well as the measurement of cytokines, in the groups that presented or did not present a thrombotic event. RESULTS: There were seven confirmed cases of thrombotic occurrence in the cohort. A reduction in the time of prothrombin activity was observed in the group with thrombosis. Further, 27.8% of all patients had thrombocytopenia. In the group that had thrombotic events, the levels of IL1b, IL-10, and IL2 were higher (p < 0.05). CONCLUSIONS: In the studied sample, there was an increase in the inflammatory response in patients with thrombotic events, confirmed by the increase in cytokines. Furthermore, in this cohort, a link was observed between the IL-10 percentage and an increased chance of a thrombotic event.


Assuntos
COVID-19 , Trombose , Humanos , COVID-19/complicações , SARS-CoV-2 , Interleucina-10 , Estudos Retrospectivos , Trombose/etiologia , Citocinas
6.
Adv Exp Med Biol ; 1411: 91-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949307

RESUMO

Mounting evidence links psychiatric disorders to central and systemic inflammation. Experimental (animal) models of psychiatric disorders are important tools for translational biopsychiatry research and CNS drug discovery. Current experimental models, most typically involving rodents, continue to reveal shared fundamental pathological pathways and biomarkers underlying the pathogenetic link between brain illnesses and neuroinflammation. Recent data also show that various proinflammatory factors can alter brain neurochemistry, modulating the levels of neurohormones and neurotrophins in neurons and microglia. The role of "active" glia in releasing a wide range of proinflammatory cytokines also implicates glial cells in various psychiatric disorders. Here, we discuss recent animal inflammation-related models of psychiatric disorders, focusing on their translational perspectives and the use of some novel promising model organisms (zebrafish), to better understand the evolutionally conservative role of inflammation in neuropsychiatric conditions.


Assuntos
Inflamação , Peixe-Zebra , Animais , Inflamação/metabolismo , Encéfalo/metabolismo , Modelos Animais , Neuroglia/metabolismo , Microglia/patologia
7.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834599

RESUMO

Psychiatric disorders are highly prevalent brain pathologies that represent an urgent, unmet biomedical problem. Since reliable clinical diagnoses are essential for the treatment of psychiatric disorders, their animal models with robust, relevant behavioral and physiological endpoints become necessary. Zebrafish (Danio rerio) display well-defined, complex behaviors in major neurobehavioral domains which are evolutionarily conserved and strikingly parallel to those seen in rodents and humans. Although zebrafish are increasingly often used to model psychiatric disorders, there are also multiple challenges with such models as well. The field may therefore benefit from a balanced, disease-oriented discussion that considers the clinical prevalence, the pathological complexity, and societal importance of the disorders in question, and the extent of its detalization in zebrafish central nervous system (CNS) studies. Here, we critically discuss the use of zebrafish for modeling human psychiatric disorders in general, and highlight the topics for further in-depth consideration, in order to foster and (re)focus translational biological neuroscience research utilizing zebrafish. Recent developments in molecular biology research utilizing this model species have also been summarized here, collectively calling for a wider use of zebrafish in translational CNS disease modeling.


Assuntos
Doenças do Sistema Nervoso Central , Transtornos Mentais , Animais , Humanos , Peixe-Zebra/fisiologia , Sistema Nervoso Central/patologia , Modelos Animais , Doenças do Sistema Nervoso Central/patologia , Comportamento Animal , Modelos Animais de Doenças
8.
Talanta ; 255: 124242, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638654

RESUMO

Monitoring chemotherapeutic drugs in biological fluids is, in many cases, extremely important for dose adjustment, the maintenance of therapies, and the control of side effects. In this work, a method for determining the doxorubicin in saliva by digital image analysis (DIA) was optimised and validated. Images from a paper point were obtained using a conventional and cheap flatbed scanner at a 600 ppp resolution. The RGB data channels were obtained from the images in a region of 15 × 15 pixels around the sorbent vertex. The paper point was used as sorbent material in sample preparation using a multiphase electroextraction system. Following optimisation using a Doehlert experimental design, the method was able to simultaneously extract 66 samples in 20 min. The high selectivity of the electric field associated with the sorption capacity of the cellulosic material allowed the chemotherapy drug to be pre-concentrated and quantified in a range between 50 and 500 µg L-1 (R2 > 0.98). The method also exhibited adequate parameters (limits of detection and quantification, recovery, and precision) indicating its potential application in the monitoring of doxorubicin and similar drugs in saliva.


Assuntos
Doxorrubicina , Saliva
9.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430455

RESUMO

Channelopathies are a large group of systemic disorders whose pathogenesis is associated with dysfunctional ion channels. Aberrant transmembrane transport of K+, Na+, Ca2+ and Cl- by these channels in the brain induces central nervous system (CNS) channelopathies, most commonly including epilepsy, but also migraine, as well as various movement and psychiatric disorders. Animal models are a useful tool for studying pathogenesis of a wide range of brain disorders, including channelopathies. Complementing multiple well-established rodent models, the zebrafish (Danio rerio) has become a popular translational model organism for neurobiology, psychopharmacology and toxicology research, and for probing mechanisms underlying CNS pathogenesis. Here, we discuss current prospects and challenges of developing genetic, pharmacological and other experimental models of major CNS channelopathies based on zebrafish.


Assuntos
Canalopatias , Epilepsia , Animais , Peixe-Zebra/genética , Canalopatias/genética , Modelos Animais de Doenças , Encéfalo
10.
Clin Immunol ; 242: 109092, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35944882

RESUMO

Vaccines induce antibodies, but T cell responses are also important for protection against Coronavirus disease 2019. Here, we analyzed the frequency of memory T cells in infected and/or vaccinated individuals and observed a decrease in central memory T cells in individuals who were vaccinated following COVID-19 infection.


Assuntos
Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , Linfócitos T CD8-Positivos/citologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Células T de Memória/citologia , Vacinação
11.
Behav Brain Res ; 434: 114029, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35907568

RESUMO

Due to the recognition of fishes as sentient beings, the zebrafish (Danio rerio) has become an emergent animal model system to investigate the biological processes of nocifensive responses. Here, we aimed to characterize the zebrafish social behavior in a nociception-based context. For this purpose, using a three-dimensional analysis of heterogeneous shoals, we investigated the main behavioral responses in two 6-min trials: before (baseline) and after a single intraperitoneal (i.p) injection of 10 µL phosphate-buffered saline (PBS) (control), acetic acid 5% (AA), morphine 2.5 mg/kg (MOR) or acetic acid 5% plus morphine 2.5 mg/kg (AA + MOR) in one subject from a four-fish shoal. The social preference of individuals for tanks with shoals of fish treated with PBS, 5 % AA, or to an empty aquarium was also tested. We verified that AA administration disrupted the shoal homogeneity by eliciting dispersion of the treated fish with simultaneous clustering of non-manipulated fish. In general, morphine coadministration protected against AA-induced behavioral changes. The social preference test revealed a clear preference to conspecifics (PBS and AA) over an empty tank. However, a prominent preference for PBS- over AA-treated shoal was verified. Overall, our novel findings show that nociception can modulate zebrafish sociability, possibly due to the visual recognition of nocifensive responses. Although future studies are needed to elucidate how nociception modulates zebrafish social behavior, our results contribute to improve the welfare assessment of zebrafish shoals under distinct experimental manipulations.


Assuntos
Nociceptividade , Peixe-Zebra , Ácido Acético , Animais , Comportamento Animal , Modelos Animais de Doenças , Morfina , Comportamento Social , Transtornos do Comportamento Social
12.
Front Cell Infect Microbiol ; 12: 899702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669120

RESUMO

COVID-19, also known as coronavirus disease 2019, is an infectious viral disease caused by SARS-CoV-2, a novel coronavirus. Since its emergence, its epidemiology has been explored; however, for some regions of the world, COVID-19's behavior, incidence, and impact remain unclear. In continental nations like Brazil, this lack of knowledge results in nonuniform control, prevention, and treatment measures, which can be controversial in some locations. This study aimed to describe the epidemiological profile of patients with COVID-19 in the macroregion of Triângulo Sul in the state of Minas Gerais (MG), Brazil. Between March 25 and October 21, 2020, data were collected and statistically analyzed from 395 hospitalized patients in the city of Uberaba, MG, suspected to have moderate or severe forms of the disease. Of the 395 suspected cases, 82% were confirmed to be positive for COVID-19. The mean age of positive patients was 58.4 years, and 60.76% were male. Following these patients throughout their hospitalization, a mortality rate of 31.3% was observed. In the population positive for COVID-19, the risk of death increased by 4% for each year of the patient's age. Likewise, the older the patient, the longer their hospitalization and the higher the risk of developing acute respiratory failure. Among the treatments tested in patients, heparin was associated with protection against mortality, and the absence of anticoagulant use was linked to a more than six times greater risk of death. Finally, comorbidities in patients with COVID-19 were positively correlated with increased hospitalization time. In summary, this study revealed that age, presence of comorbidities, length of hospitalization, and drug treatment considerably altered COVID-19's lethality. To understand infection rates and the factors involved in COVID-19's lethality, knowledge of the local epidemiology is necessary.


Assuntos
COVID-19 , Brasil/epidemiologia , COVID-19/epidemiologia , Feminino , Hospitalização , Humanos , Pacientes Internados , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
13.
Ecotoxicol Environ Saf ; 239: 113635, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605321

RESUMO

Perfluorooctanoic acid (PFOA) is a contaminant of global concern owing to its prevalent occurrence in aquatic and terrestrial environments with potential hazardous impact on living organisms. Here, we investigated the influence of realistic environmental concentrations of PFOA (0, 0.25, 0.5, or 1.0 mg/L) on relevant behaviors of adult zebrafish (Danio rerio) (e.g., exploration to novelty, social preference, and aggression) and the possible role of PFOA in modulating cholinergic and purinergic signaling in the brain after exposure for 7 consecutive days. PFOA significantly increased geotaxis as well as reduced vertical exploration (a behavioral endpoint for anxiety), and increased the frequency and duration of aggressive episodes without affecting their social preference. Exposure to PFOA did not affect ADP hydrolysis, whereas ATP and AMP hydrolysis were significantly increased at the highest concentration tested. However, AChE activity was markedly decreased in all PFOA-exposed groups when compared with control. In conclusion, PFOA induces aggression and anxiety-like behavior in adult zebrafish and modulates both cholinergic and purinergic signaling biomarkers. These novel data can provide valuable insights into possible health threats related to human activities, demonstrating the utility of adult zebrafish to elucidate how PFOA affects neurobehavioral responses in aquatic organisms.


Assuntos
Fluorocarbonos , Peixe-Zebra , Agressão , Animais , Ansiedade/induzido quimicamente , Caprilatos/toxicidade , Colinérgicos , Fluorocarbonos/toxicidade , Humanos , Peixe-Zebra/fisiologia
14.
Curr Neuropharmacol ; 20(3): 476-493, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33719974

RESUMO

The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) is a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish responses to painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from evolutionary and translational perspectives. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.


Assuntos
Dor , Peixe-Zebra , Analgésicos , Animais , Modelos Animais de Doenças , Dor/tratamento farmacológico , Pesquisa Translacional Biomédica , Peixe-Zebra/genética
15.
J Endocrinol Invest ; 45(1): 199-208, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34312809

RESUMO

PURPOSE: COVID-19 disease may result in a severe multisystem inflammatory syndrome in children (MIS-C), which in turn may alter thyroid function (TF). We assessed TF in MIS-C, evaluating its impact on disease severity. METHODS: We retrospectively considered children admitted with MIS-C to a single pediatric hospital in Milan (November 2019-January 2021). Non-thyroidal illness syndrome (NTIS) was defined as any abnormality in TF tests (FT3, FT4, TSH) in the presence of critical illness and absence of a pre-existing hormonal abnormality. We devised a disease severity score by combining severity scores for each organ involved. Glucose and lipid profiles were also considered. A principal component analysis (PCA) was performed, to characterize the mutual association patterns between TF and disease severity. RESULTS: Of 26 (19 M/7F) patients, median age 10.7 (IQR 5.8-13.3) years, 23 (88.4%) presented with NTIS. A low FT3 level was noted in 15/23 (65.3%), while the other subjects had varying combinations of hormone abnormalities (8/23, 34.7%). Mutually correlated variables related to organ damage and inflammation were represented in the first dimension (PC1) of the PCA. FT3, FT4 and total cholesterol were positively correlated and characterized the second axis (PC2). The third axis (PC3) was characterized by the association of triglycerides, TyG index and HDL cholesterol. TF appeared to be related to lipemic and peripheral insulin resistance profiles. A possible association between catabolic components and severity score was also noted. CONCLUSIONS: A low FT3 level is common among MIS-C. TF may be useful to define the impact of MIS-C on children's health and help delineate long term follow-up management and prognosis.


Assuntos
COVID-19/complicações , Síndromes do Eutireóideo Doente/epidemiologia , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/virologia , Adolescente , COVID-19/epidemiologia , COVID-19/fisiopatologia , COVID-19/terapia , COVID-19/virologia , Criança , Pré-Escolar , Síndromes do Eutireóideo Doente/fisiopatologia , Síndromes do Eutireóideo Doente/virologia , Feminino , Humanos , Itália/epidemiologia , Masculino , Prognóstico , Estudos Retrospectivos , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica/epidemiologia , Glândula Tireoide/fisiopatologia , Glândula Tireoide/virologia , Tireotropina/sangue , Tiroxina , Tri-Iodotironina
16.
Behav Brain Res ; 416: 113565, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34499933

RESUMO

Acid-sensing ion channels (ASICs) play significant roles in numerous neurological and pathological conditions, including pain. Although acid-induced nociception has been characterized previously in zebrafish, the contribution of ASICs in modulating pain-like behaviors is still unknown. Here, we investigated the role of amiloride, a nonselective ASICs blocker, in the negative modulation of specific behavioral responses in a zebrafish-based model of acute visceral pain. We verified that intraperitoneal injection (i.p.) of 0.25, 0.5, 1.0, and 2.0 mg/mL amiloride alone or vehicle did not change zebrafish behavior compared to saline-treated fish. Administration of 2.5% acetic acid (i.p.) elicited writhing-like response evidenced by the abnormal body curvature and impaired locomotion and motor activity. Attenuation of acetic acid-induced pain was verified at lower amiloride doses (0.25 and 0.5 mg/mL) whereas 1.0 and 2.0 mg/mL abolished pain-like responses. The protective effect of the highest amiloride dose tested was evident in preventing writhing-like responses and impaired locomotion and vertical activity. Collectively, amiloride antagonized abdominal writhing-like phenotype and aberrant behaviors, supporting the involvement of ASICs in a zebrafish-based model of acute visceral pain.


Assuntos
Canais Iônicos Sensíveis a Ácido , Amilorida/farmacologia , Locomoção/efeitos dos fármacos , Dor Visceral/tratamento farmacológico , Peixe-Zebra , Animais , Modelos Animais de Doenças , Injeções Intraperitoneais , Masculino , Nociceptividade/efeitos dos fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-33722767

RESUMO

The zebrafish (Danio rerio) has been considered a suitable model organism to assess the evolutionarily conserved bases of behavioral and neuroendocrine responses to stress. Depending on the nature of the stressor, prolonged stress may elicit habituation or evoke long-term changes in the central nervous systems (CNS) often associated with various neuropsychiatric disorders. Conspecific alarm substance (CAS) and net chasing (NC) constitute chemical and physical stressors, respectively, which cause aversive behaviors and physiological changes in fishes. Here, we investigate whether predictable chronic stress (PCS) using two homotypic stressors differently modulates behavioral and physiological responses in zebrafish. PCS-CAS or PCS-NC were performed for 14 days, 2-times daily, while locomotion, exploratory activity, anxiety-like behaviors, and whole-body cortisol levels were measured on day 15. PCS-CAS reduced distance traveled, the number of transitions and time in top area, as well as increased the latency to enter the top in the novel tank test. In the light/dark test, CAS-exposed fish showed decreased time spent in lit area, shorter latency to enter the dark area, and increased risk assessments. PCS-CAS also increased whole-body cortisol levels in zebrafish. Although PCS-NC reduced the latency to enter the dark area, whole-body cortisol levels did not change. Moreover, acute experiments revealed that both CAS and NC promoted anxiogenesis and increased cortisol levels, suggesting habituation to stress following PCS-NC. Overall, our novel findings demonstrate that PCS induces behavioral and physiological changes in zebrafish depending on the nature of the stressor.


Assuntos
Comportamento Animal , Sistemas Neurossecretores/metabolismo , Estresse Fisiológico , Peixe-Zebra/metabolismo , Animais , Hidrocortisona/farmacologia
18.
J Perinatol ; 41(9): 2298-2303, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33664472

RESUMO

OBJECTIVE: To compare sucrose 24% oral gel formulation to liquid formula and breastfeeding during a heel prick in neonates. STUDY DESIGN: In this comparative effectiveness research 195 neonates >36 weeks' gestation were randomised to three groups, receiving during heel stick: (i) breastfeeding, (ii) sucrose 24% liquid with non-nutritive sucking and (iii) sucrose 24% gel with non-nutritive sucking. The pain was assessed through the Neonatal Infant Pain Scale. RESULTS: All the methods analysed has shown to be effective in reducing pain. There was an increase in odds of pain following liquid sucrose compared to breastfeeding (OR = 1.60; 95% CI: 0.82-3.3; p = 0.17). A reduction of odds of pain was showed comparing sucrose to breastfeeding (OR = 0.78; 0.38-1.6; 0.48), and comparing sucrose gel to liquid formula (OR = 0.48; 0.23-0.96; p = 0.04). CONCLUSION: Sucrose 24% gel with non-nutritive sucking seems to be a valid alternative when breastfeeding is not possible. Further research is needed.


Assuntos
Pesquisa Comparativa da Efetividade , Recém-Nascido Prematuro , Feminino , Humanos , Lactente , Recém-Nascido , Dor/etiologia , Dor/prevenção & controle , Manejo da Dor , Medição da Dor , Sacarose
19.
J Contemp Dent Pract ; 21(6): 609-614, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33025927

RESUMO

AIM: This clinical study aimed to evaluate the efficacy of a toothpaste containing a proprietary REFIX technology (Regenerador + Sensitive DentalClean, Rabbit Corp) against dentin hypersensitivity. MATERIALS AND METHODS: Fifty-three volunteers who fulfilled the inclusion criteria and signed the consent form were included. They were examined for dentin hypersensitivity. The participants received a 1-second blast of air, and the tooth sensitivity, from 0 to 10, was immediately evaluated using a visual analog scale (VAS). Then, the participants brushed their teeth with the multifunctional toothpaste, and dentin hypersensitivity was tested a second time using the same scale. The participants continued to use the toothpaste three times a day for 1 week, after which dentin hypersensitivity was recorded for the third time. Data were statistically analyzed using analysis of variance (ANOVA) and Tukey's test (α = 0.05). RESULTS: The mean patient age was 40 years, and 70% of the 53 subjects were female. There was a significant reduction in dentin hypersensitivity immediately after using the toothpaste and after 1 week. The baseline mean patient-reported pain score was severe (6.5 ± 2.4). Immediately after the first use of the toothpaste, the mean reported pain significantly decreased to mild pain (2.5 ± 2.5) (p < 0.05). After 1 week of consistent use of the toothpaste, the pain score reduced significantly (0.7 ± 1.2) (p < 0.05), and most participants reported no pain, demonstrating the effectiveness of the REFIX technology against dentin hypersensitivity. CONCLUSION: This clinical trial shows that the use of the phosphate-based desensitizing toothpaste containing REFIX technology significantly reduces dentin hypersensitivity after 1 week of consistent use. CLINICAL SIGNIFICANCE: The absence of pain, a desired clinical condition in patients with dentin hypersensitivity, was reached with the use of desensitizing toothpaste containing REFIX technology after 1 week of use. Such condition positively impacts quality of life, providing a healthier daily routine for patients.


Assuntos
Dessensibilizantes Dentinários , Sensibilidade da Dentina , Cremes Dentais , Arginina , Carbonato de Cálcio , Dessensibilizantes Dentinários/uso terapêutico , Sensibilidade da Dentina/tratamento farmacológico , Sensibilidade da Dentina/prevenção & controle , Método Duplo-Cego , Feminino , Fluoretos , Humanos , Qualidade de Vida , Fluoreto de Sódio , Escovação Dentária , Cremes Dentais/uso terapêutico , Resultado do Tratamento
20.
Artigo em Inglês | MEDLINE | ID: mdl-32360787

RESUMO

Social behaviors are key components that play adaptive roles in various species, including humans. The zebrafish (Danio rerio) is a social species and the shoaling behavior can be pharmacologically manipulated either by anxiogenic or anxiolytic substances, providing translatable data in neuropsychiatric research. Here, we aimed to characterize the shoaling behavior in zebrafish under different pharmacological manipulations in a three-dimensional (3D) perspective using the spatial coordinates of the fish positions. Temporal and spatial reconstructions of shoal occupancy were performed after exposure to conspecific alarm substance (CAS) and caffeine (CAF) (anxiogenic substances) or diazepam (DZP) (a classical anxiolytic drug). Behavioral 3D analyses and spatiotemporal reconstructions of the shoaling behavior revealed that both CAS and CAF decreased the shoal volume, the average fish distance to the centoid point, and increased shoal geotaxis, but only CAS reduced the inter-fish distance when compared to control (CTRL). Conversely, DZP group showed increased shoal volume and inter-fish distance. Because substantial differences were verified when the shoaling response was analyzed in 3D and 2D perspectives, we reinforce the use of 3D reconstructions of fish positions to assess how different manipulations affect the social behavior of zebrafish. The novel procedure described here represents an easy-to-use, inexpensive, and alternative tool to perform a spatiotemporal reconstruction of the shoal occupancy under different pharmacological manipulations, complementing the existing quantification of locomotion activity of multiple fish.


Assuntos
Ansiolíticos/farmacologia , Comportamento Social , Peixe-Zebra , Algoritmos , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Comportamento Animal , Cafeína/farmacologia , Diazepam/farmacologia , Comportamento Exploratório/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA