Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cogn Process ; 25(Suppl 1): 61-66, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39123056

RESUMO

Maps have been invaluable navigation aids for millennia and thus have been critical for human survival. The increasing popularity of and high dependence on digital, location-aware assistive navigation technology, however, has been shown to divert our attention from the environment and to negatively influence innate spatial abilities. To mitigate this, neuroadaptive mobile geographic information displays (namGIDs) are proposed that respond in real-time to navigators' cognitive task demands and wayfinder's situated visuo-spatial attention needs. In doing so, namGIDs may not only help navigators maintain navigation efficiency but more importantly, also continuously scaffold spatial learning. To do this, the proposed navigation assistance must strike the appropriate balance between welcomed mobility efficiency gains while limiting human spatial deskilling. Leveraging neuroadaptive cartography, we can ensure to remain effective navigators, empowered to explore the world with confidence.


Assuntos
Navegação Espacial , Humanos , Navegação Espacial/fisiologia , Percepção Espacial/fisiologia , Atenção/fisiologia , Aprendizagem Espacial/fisiologia , Adaptação Fisiológica/fisiologia , Sistemas de Informação Geográfica
2.
Ann Am Assoc Geogr ; 114(7): 1483-1504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193381

RESUMO

Reliance on digital navigation aids has already shown negative impacts on navigators' innate spatial abilities. How this happens is still an open research question. We report on an empirical study with twenty-four experienced (male) taxi drivers to evaluate the long-term impacts of in-car navigation system use on the spatial learning ability of these navigation experts. Specifically, we measured cognitive load by means of electroencephalography (EEG) coupled with eye tracking to assess their visuospatial attention allocation during a video-based route-following task while driving through an unknown urban environment. We found that long-term reliance on in-car navigation aids did not affect participants' visual attention allocation during spatial learning but rather limited their ability to encode viewed geographic information into memory, which, in turn, led to greater cognitive load, especially along route segments between intersections. Participants with greater dependence on in-car navigation aids performed worse on the spatial knowledge tests. Our combined behavioral and neuropsychological findings provide evidence for the impairment of expert navigators' spatial learning ability when exposed to long-term use of digital in-car navigation aids.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38468023

RESUMO

An often-proposed enhancement for mobile maps to aid assisted navigation is the presentation of landmark information, yet understanding of the manner in which they should be displayed is limited. In this study, we investigated whether the visualization of landmarks as 3D map symbols with either an abstract or realistic style influenced the subsequent processing of those landmarks during route navigation. We utilized a real-world mobile electroencephalography approach to this question by combining several tools developed to overcome the challenges typically encountered in real-world neuroscience research. We coregistered eye-movement and EEG recordings from 45 participants as they navigated through a real-world environment using a mobile map. Analyses of fixation event-related potentials revealed that the amplitude of the parietal P200 component was enhanced when participants fixated landmarks in the real world that were visualized on the mobile map in a realistic style, and that frontal P200 latencies were prolonged for landmarks depicted in either a realistic or abstract style compared with features of the environment that were not presented on the map, but only for the male participants. In contrast, we did not observe any significant effects of landmark visualization style on visual P1-N1 peaks or the parietal late positive component. Overall, the findings indicate that the cognitive matching process between landmarks seen in the environment and those previously seen on a map is facilitated by more realistic map display, while low-level perceptual processing of landmarks and recall of associated information are unaffected by map visualization style.

4.
J Locat Based Serv ; 17(4): 340-354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143511

RESUMO

Well-designed, neuroadaptive mobile geographic information displays (namGIDs) could improve the lives of millions of mobile citizens of the mostly urban information society who daily need to make time critical and societally relevant decisions while navigating. What are the basic perceptual and neurocognitive processes with which individuals make movement decisions when guided by human- and context-adaptive namGIDs? How can we study this in an ecologically valid way, also outside of the highly controlled laboratory? We report first ideas and results from our unique neuroadaptive research agenda that brings us closer to answering this fundamental empirical question. We present our first implemented methodological solutions of novel ambulatory evaluation methods to study and improve Location-based System (LBS) displays, by critical examination of how perceptual, neurocognitive, psychophysiological, and display design factors might influence decision-making and spatial learning in pedestrian mobility across broad ranges of users and mobility contexts.

5.
IEEE Comput Graph Appl ; 43(5): 49-61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37527308

RESUMO

Set visualization facilitates the exploration and analysis of set-type data. However, how sets should be visualized when the data are uncertain is still an open research challenge. To address the problem of depicting uncertainty in set visualization, we ask 1) which aspects of set type data can be affected by uncertainty and 2) which characteristics of uncertainty influence the visualization design. We answer these research questions by first describing a conceptual framework that brings together 1) the information that is primarily relevant in sets (i.e., set membership, set attributes, and element attributes) and 2) different plausible categories of (un)certainty (i.e., certainty, undefined uncertainty as a binary fact, and defined uncertainty as quantifiable measure). Following the structure of our framework, we systematically discuss basic visualization examples of integrating uncertainty in set visualizations. We draw on existing knowledge about general uncertainty visualization and previous evidence of its effectiveness.

6.
PLoS One ; 16(2): e0246479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539461

RESUMO

Color is key for the visual encoding of data, yet its use reportedly affects decision making in important ways. We examined the impact of various popular color schemes on experts' and lay peoples' map-based decisions in two, geography and neuroscience, scenarios, in an online visualization experiment. We found that changes in color mappings influence domain experts, especially neuroimaging experts, more in their decision-making than novices. Geographic visualization experts exhibited more trust in the unfavorable rainbow color scale than would have been predicted by their suitability ratings and their training, which renders them sensitive to scale appropriateness. Our empirical results make a strong call for increasing scientists' awareness for and training in perceptually salient and cognitively informed design principles in data visualization.


Assuntos
Cor , Visualização de Dados , Humanos
7.
Swiss Med Wkly ; 150: w20282, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32418194

RESUMO

As COVID-19 spreads across the globe, crowdsourced digital technology harbours the potential to improve surveillance and epidemic control, primarily through increased information coverage, higher information speed, fast case tracking and improved proximity tracing. Targeting those aims, COVID-19-related smartphone and web-based health applications are continuously emerging, leading to a multitude of options, raising ethical and legal challenges and potentially overwhelming end users. Building on an existing trustworthiness checklist for digital health applications, we searched the literature and developed a framework to guide the assessment of smartphone and web-based applications that aim to contribute to controlling the current epidemic or mitigating its effects. It further integrates epidemiological subject knowledge and a legal analysis, outlining the mechanisms through which new applications can support the fight against COVID-19. The resulting framework includes 40 questions across 8 domains on “purpose”, “usability”, “information accuracy”, “organisational attributes / reputation”, “transparency”, “privacy” and “user control / self-determination”. All questions should be primarily answerable from publicly available data, as provided by application manufacturers. The framework aims to guide end users in choosing a transparent, safe and valuable application and suggests a set of information items that developers ideally make available to allow a balanced judgement and facilitate the trustworthiness of their products.


Assuntos
Lista de Checagem/normas , Infecções por Coronavirus , Coronavirus , Aplicativos Móveis , Pandemias/prevenção & controle , Pneumonia Viral , Smartphone , Telemedicina , Betacoronavirus , COVID-19 , Busca de Comunicante , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Sistemas de Informação Geográfica , Humanos , Aplicações da Informática Médica , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Privacidade , SARS-CoV-2
8.
Cogn Res Princ Implic ; 4(1): 5, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30758681

RESUMO

Navigation systems are ubiquitous tools to assist wayfinders of the mobile information society with various navigational tasks. Whenever such systems assist with self-localization and path planning, they reduce human effort for navigating. Automated navigation assistance benefits navigation performance, but research seems to show that it negatively affects attention to environment properties, spatial knowledge acquisition, and retention of spatial information. Very little is known about how to design navigation systems for pedestrian navigation that increase both navigation performance and spatial knowledge acquisition. To this end, we empirically tested participants (N = 64) using four different navigation system behaviors (between-subject design). Two cognitive processes with varying levels of automation, self-localization and allocation of attention, define navigation system behaviors: either the system automatically executes one of the processes (high level of automation), or the system leaves the decision of when and where to execute the process to the navigator (low level of automation). In two experimental phases, we applied a novel empirical framework for evaluating spatial knowledge acquisition in a real-world outdoor urban environment. First, participants followed a route assisted by a navigation system and, simultaneously, incidentally acquired spatial knowledge. Second, participants reversed the route using the spatial knowledge acquired during the assisted phase, this time without the aid of the navigation system. Results of the route-following phase did not reveal differences in navigation performance across groups using different navigation system behaviors. However, participants using systems with higher levels of automation seemed not to acquire enough spatial knowledge to reverse the route without navigation errors. Furthermore, employing novel methods to analyze mobile eye tracking data revealed distinct patterns of human gaze behavior over time and space. We thus can demonstrate how to increase spatial knowledge acquisition without harming navigation performance when using navigation systems, and how to influence human navigation behavior with varying navigation system behavior. Thus, we provide key findings for the design of intelligent automated navigation systems in real-world scenarios.

9.
PLoS One ; 13(4): e0195970, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29652921

RESUMO

Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships.


Assuntos
Doenças do Cão/epidemiologia , Modelos Estatísticos , Neoplasias/veterinária , Animais , Cães , Incidência , Análise de Regressão , Estudos Retrospectivos , Análise Espacial , Suíça/epidemiologia
10.
Geospat Health ; 12(1): 539, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28555480

RESUMO

Epidemiological research of canine cancers could inform comparative studies of environmental determinants for a number of human cancers. However, such an approach is currently limited because canine cancer data sources are still few in number and often incomplete. Incompleteness is typically due to under-ascertainment of canine cancers. A main reason for this is because dog owners commonly do not seek veterinary care for this diagnosis. Deeper knowledge on under-ascertainment is critical for modelling canine cancer incidence, as an indication of zero incidence might originate from the sole absence of diagnostic examinations within a given sample unit. In the present case study, we investigated effects of such structural zeros on models of canine cancer incidence. In doing so, we contrasted two scenarios for modelling incidence data retrieved from the Swiss Canine Cancer Registry. The first scenario was based on the complete enumeration of incidence data for all Swiss municipal units. The second scenario was based on a filtered sample that systematically discarded structural zeros in those municipal units where no diagnostic examination had been performed. By means of cross-validation, we assessed and contrasted statistical performance and predictive power of the two modelling scenarios. This analytical step allowed us to demonstrate that structural zeros impact on the generalisability of the model of canine cancer incidence, thus challenging future comparative studies of canine and human cancers. The results of this case study show that increased awareness about the effects of structural zeros is critical to epidemiological research.


Assuntos
Modelos Biológicos , Sistema de Registros/estatística & dados numéricos , Animais , Doenças do Cão/epidemiologia , Cães , Humanos , Incidência , Neoplasias/epidemiologia , Neoplasias/veterinária
11.
IEEE Trans Vis Comput Graph ; 20(8): 1141-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26357367

RESUMO

Depicting change captured by dynamic graphs and temporal paths, or trails, is hard. We present two techniques for simplified visualization of such data sets using edge bundles. The first technique uses an efficient image-based bundling method to create smoothly changing bundles from streaming graphs. The second technique adds edge-correspondence data atop of any static bundling algorithm, and is best suited for graph sequences. We show how these techniques can produce simplified visualizations of streaming and sequence graphs. Next, we show how several temporal attributes can be added atop of our dynamic graphs. We illustrate our techniques with data sets from aircraft monitoring, software engineering, and eye-tracking of static and dynamic scenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA